• Title/Summary/Keyword: Double Hull Oil Tanker

Search Result 23, Processing Time 0.016 seconds

A study for numerical simulation about grounding of 105k tanker (LS-DYNA3D를 이용한 좌초 선박 손상평가)

  • Han, Dae-Suk;Rim, Chae-Whan;Lee, Tak-Kee;Lee, Jae-Myung
    • Journal of Navigation and Port Research
    • /
    • v.31 no.3 s.119
    • /
    • pp.213-221
    • /
    • 2007
  • Recently, environmental design are becoming a matter of grave concern in shipbuilding. Out of these concern, oil spilt which is induced by grounding accidents is very critical reason of the ocean pollution. Therefore, a series qf quarter of 105k tanker model grounding simulations were conducted to analyze it's characteristics for the accident. ship get using LS-DYNA3D. In this paper, to conduct whole simulations, a meshsize convergence test was carried out to determine appropriate meshsize for grounding test. After the series analysis. These results were analyzed as each case.

A Study on Residual Strength Assessment of Damaged Oil Tanker by Smith Method (Smith법에 의한 손상 유조선의 잔류강도 평가 연구)

  • Ahn, Hyung-Joon;Baek, Deok-Pyo;Lee, Tak-Kee
    • Journal of Navigation and Port Research
    • /
    • v.35 no.10
    • /
    • pp.823-827
    • /
    • 2011
  • The present Common Structural Rules for double hull oil tanker is not included the residual strength, which is one of the functional requirements in design part of Goal-based new ship construction standards (GBS). The GBS will be enforced after July 1, 2016. The requirement related residual strength has the goal to build safe ship even if she has the specified damages due to marine accidents including collision and grounding. In order to assess the residual strength based on risk for structural damages according to GBS, tons of nonlinear FE analysis work taking into account various types of damage will be needed. The Smith's method, a kind of simplified method for the strength analysis is very useful for this purpose. In this paper, the residual strength assessments based on ultimate strength using Smith's method were carried out. The objected ship is VLCC with stranding damage in bottom structures. Also, the results were compared with that of nonlinear FE analysis using three cargo hold model.

Structural Strength and Fatigue Strength Assessment for Fore/Aft Cargo Hold of 60m Beam VLCC (60m Beam VLCC Fore/Aft Cargo Hold에 대한 구조 안정성 및 피로강도 평가)

  • Lee Sang-Woo;Choi J.H.;Kim M.S.;Kim M.S.;Lee Y.M.;Kim K.S.
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2005.06a
    • /
    • pp.84-89
    • /
    • 2005
  • The double hull VLCC(Very Large Crude Oil Tanker) have been designed to have each four(4) longitudinal bulkheads and transverse bulkheads in general. Actually, the inside longitudinal bulkheads among four(4) longitudinal bulkheads, which are extended up to the end of the aft cargo hold for continuity of the members, have been designed with knuckled type inboard due to the narrowed hull shape at bottom region, but sometimes the straight type of longitudinal bulkheads were adopted based on the degree of the hull lines shape. However, regardless the type of longitudinal bulkheads, inside and outside longitudinal bulkheads conflict each other in aft cargo hold region This makes the structure more complex thus giving difficulties to structural design and production. Recently, a vessel of straight type was reported to have cracks on bracket end and tripping bracket toe in aft cargo hold region. As a solution to this problem, in designing the first 60m Beam VLCC, DSME developed a new cargo hold structure which is good in production and structural point of view by structural strength and fatigue analysis of fore and aft cargo hold.

  • PDF