• Title/Summary/Keyword: Double Fourier

Search Result 148, Processing Time 0.026 seconds

Solution of E-polarized Scattering by a Resistive Strip Grating Between a Double Dielectric Layer Using FGMM (FGMM을 이용한 2중 유전체층 사이의 저항띠 격자구조에 의한 TM 산란 해)

  • Uei-Joong Yoon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.641-646
    • /
    • 2023
  • In this paper, TM(transverse magnetic) scattering problems by a resistive strip grating between a double dielectric layer are analyzed by using the FGMM(fourier galerkin moment method) known as a numerical method of electromagnetic fileld. The boundary conditions are applied to obtain the unknown field coefficients, the scattered electromagnetic fields are expanded in a series of Floquet mode functions, and the resistive boundary condition is applied to analysis of the resistive strip. Overall, as the uniform resistivity of the resistive strip increased, the size of the current density induced in the resistance band decreased, the reflected power decreased, and the transmitted power increased. In addition, As the thickness of the dielectric layer increased, the reflected power increased and the transmitted power relatively decreased. The numerical results of the structure proposed in this paper are shown in good agreement compared to the results of PMM, a numerical analysis method of the existing paper.

Image Authentication Using Only Partial Phase Information from a Double-Random-Phase-Encrypted Image in the Fresnel Domain

  • Zheng, Jiecai;Li, Xueqing
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.241-247
    • /
    • 2015
  • The double-random phase encryption (DRPE) algorithm is a robust technique for image encryption, due to its high speed and encoding a primary image to stationary white noise. Recently it was reported that DRPE in the Fresnel domain can achieve a better avalanche effect than that in Fourier domain, which means DRPE in the Fresnel domain is much safer, to some extent. Consequently, a method based on DRPE in the Fresnel domain would be a good choice. In this paper we present an image-authentication method which uses only partial phase information from a double-random-phase-encrypted image in the Fresnel domain. In this method, only part of the phase information of an image encrypted with DRPE in the Fresnel domain needs to be kept, while other information like amplitude values can be eliminated. Then, with the correct phase keys (we do not consider wavelength and distance as keys here) and a nonlinear correlation algorithm, the encrypted image can be authenticated. Experimental results demonstrate that the encrypted images can be successfully authenticated with this partial phase plus nonlinear correlation technique.

Bending performance of laminated sandwich shells in hyperbolic paraboloidal form

  • Alankaya, Veysel;Erdonmez, Cengiz
    • Steel and Composite Structures
    • /
    • v.25 no.3
    • /
    • pp.337-346
    • /
    • 2017
  • Sandwich shells made of composite materials are the main focus on recent literature parallel to the requirements of industry. They are commonly chosen for the modern engineering applications which require moderate strength to weight ratio without dependence on conventional manufacturing techniques. The investigations on hyperbolic paraboloidal formed sandwich composite shells are limited in the literature contrary to shells that have a number of studies, consisting of doubly curved surfaces, arbitrary boundaries and laminations. Because of the lack of contributive data in the literature, the aim of this study is to present the effects of curvature on hyperbolic paraboloidal formed, layered sandwich composite surfaces that have arbitrary boundary conditions. Analytical solution methodology for the analyses of stresses and deformations is based on Third Order Shear Deformation Theory (TSDT). Double Fourier series, which are specialized for boundary discontinuity, are used to solve highly coupled linear partial differential equations. Numerical solutions showing the effects of shell geometry are presented to provide benchmark results.

Improvement of Input Current Waveform for Soft-Switching Boost DCM Converter with Unity Power Factor

  • Taniguchi K.;Watanabe T.;Morizane T.;Kimura N.;Lee Hyun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.556-560
    • /
    • 2001
  • In this paper, a soft-switching discontinuous mode (DCM) power factor corrected (PFC) converter is analyzed by applying the double Fourier series expansion. It is found that the fundamental component and higher-order harmonics included in the input current waveform are obtained by the Fourier series expansion of the mean value of the inductor current. From the theoretical analysis, a new method removing the distortion of the input current waveform is proposed. In spite of an open loop system, the proposed method makes a great improvement of the total harmonic distortion even if the ratio of output voltage to input voltage is very low.

  • PDF

A Design of Vehicle Active Suspension Controller with Variable Control Objects Determined by Driving Conditions (주행 상황에 따라 다양한 제어목적을 가지는 차량 능동 현가장치 제어기 설계)

  • Cheon, Jong-Min;Kim, Seog-Joo;Park, Jong-Moon;Kwon, Soon-Man
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.346-348
    • /
    • 2005
  • In this paper, we designed a vehicle active suspension controller. Vehicle suspensions have various design objects with tradeoff among them and these objects cannot be satisfied under all driving conditions. We need to design a controller adapted to variable driving conditions changing the objects of vehicle suspensions. To design such a controller, we must be able to detect the current driving conditions and focus on the road frequencies giving us useful and important information about driving conditions. Detecting the road frequencies, we use the Fourier Transform. A unexpected driving change like a speed bump was also included to items the new designed controller must consider.

  • PDF

Analysis of Orthotropic Cylindrical Shells Subjected to Localized Loads (국부하중 을 받는 직교이방성 원통셀 의 해석)

  • 이영신;박정화;옹장우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.5
    • /
    • pp.408-415
    • /
    • 1984
  • The stress state of orthotropic cylindrical shells subjected to localized loads is considered. The governing equations for orthotropic cylindrical shells are derived on the basis of the Morley-Koiter's isotropic shell theory. It is assumed here that the material has a special orthotropy. Solutions are obtained by the Bijlaard's method in the from of double Fourier series. Numerical examples are presented for cylindrical shells having various orthotropic material properties and shell geometries.

Static analysis of laminated and sandwich composite doubly-curved shallow shells

  • Alankaya, Veysel;Oktem, Ahmet Sinan
    • Steel and Composite Structures
    • /
    • v.20 no.5
    • /
    • pp.1043-1066
    • /
    • 2016
  • A new analytical solution based on a third order shear deformation theory for the problem of static analysis of cross-ply doubly-curved shells is presented. The boundary-discontinuous generalized double Fourier series method is used to solve highly coupled linear partial differential equations with the mixed type simply supported boundary conditions prescribed on the edges. The complementary boundary constraints are introduced through boundary discontinuities generated by the selected boundary conditions for the derivation of the complementary solution. The numerical accuracy of the solution is compared by studying the comparisons of deflections, stresses and moments of symmetric and anti-symmetric laminated shells with finite element results using commercially available software under uniformly distributed load. Results are in good agreement with finite element counterparts. Additional results of the symmetric and anti-symmetric laminated and sandwich shells under single point load at the center and pressure load, are presented to provide data for the unsolved boundary conditions, benchmark comparisons and verifications.

Frequency Domain Double-Talk Detector Based on Gaussian Mixture Model (주파수 영역에서의 Gaussian Mixture Model 기반의 동시통화 검출 연구)

  • Lee, Kyu-Ho;Chang, Joon-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.401-407
    • /
    • 2009
  • In this paper, we propose a novel method for the cross-correlation based double-talk detection (DTD), which employing the Gaussian Mixture Model (GMM) in the frequency domain. The proposed algorithm transforms the cross correlation coefficient used in the time domain into 16 channels in the frequency domain using the discrete fourier transform (DFT). The channels are then selected into seven feature vectors for GMM and we identify three different regions such as far-end, double-talk and near-end speech using the likelihood comparison based on those feature vectors. The presented DTD algorithm detects efficiently the double-talk regions without Voice Activity Detector which has been used in conventional cross correlation based double-talk detection. The performance of the proposed algorithm is evaluated under various conditions and yields better results compared with the conventional schemes. especially, show the robustness against detection errors resulting from the background noises or echo path change which one of the key issues in practical DTD.

Double DOF control of an electromechanical integrated toroidal drive

  • Xu, Lizhong;Liu, Xin
    • Smart Structures and Systems
    • /
    • v.3 no.1
    • /
    • pp.115-131
    • /
    • 2007
  • The electromechanical integrated toroidal drive is a new drive system. For the control of the drive, the torque fluctuation and the steady-state errors should be removed and the fast response to the input change should be achieved. In this paper, the torque fluctuation of the drive system is analyzed and expressed as Fourier series forms. The transfer function of the torque control for the drive system is derived from its electromechanical coupled dynamic equations. A 2-DOF control method is used to control the drive system. Using definite parameter relationship of the 2-DOF control system, the steady errors of the torque control for the drive system is removed. Influences of the drive parameters on the control system are investigated. Using proper drive parameters, the response time of the control system is reduced and the quick torque response of the drive system is realized. Using a compensated input voltage, the torque fluctuation of the drive system is removed as well. The compensated input voltage can be obtained from the torque fluctuation equation and the transfer function. These research results are useful for designing control system of the new drive.

Design and Simulation of Two-Dimensional OCDMA En/Decoder Composed of Double Ring Add/Drop Filters and Delay Waveguides

  • Chung, Youngchul
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.257-262
    • /
    • 2016
  • A two-dimensional optical code division multiple access (OCDMA) en/decoder composed of four double-ring resonator add/drop filters and three delay waveguides is designed, and a transfer matrix method combined with fast Fourier transform is implemented to provide numerical simulations for the en/decoder. The auto-correlation peak level over the maximum cross-correlation level is larger than 3 at the center of the correctly decoded pulse for most of wavelength hopping and spectral phase code combinations, which assures the BER lower than 10-3 which corresponds to the forward error correction limit.