• Title/Summary/Keyword: Dosimetric factor

Search Result 56, Processing Time 0.023 seconds

Charateristics of 10MV X-ray Beam from a Mevatron KD Linear Accelerator (Mevatron KD 선형 가속기에서의 10MV X-선 특성)

  • Yi, Byong-Yong;Lee, Myung-Za
    • Radiation Oncology Journal
    • /
    • v.6 no.1
    • /
    • pp.101-108
    • /
    • 1988
  • The beam characteristics and dosimetric measurements of the 10MV X-ray beam from a Mevatron KD linear accelerator are examined. The Percent Depth Dose (POD) table and the Tissue Maximum Ratio (TMR) table are taken from measurement as a function of the field size and the depth. The calculated TMR table from PDD table is compared with those from measurement. Other beam characteristics such as output factor, beam profile (including flatness, symmetry and penumbra), wedge, and the variation of Dmax are presented.

  • PDF

Investigation of Dose Distribution in Mixed Neutron-Gamma Field of Boron Neutron Capture Therapy using N-Isopropylacrylamide Gel

  • Bavarnegin, Elham;Khalafi, Hossein;Sadremomtaz, Alireza;Kasesaz, Yaser;Khajeali, Azim
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.189-195
    • /
    • 2017
  • Gel dosimeters have unique advantages in comparison with other dosimeters. Until now, these gels have been used in different radiotherapy techniques as a reliable dosimetric tool. Because dose distribution measurement is an important factor for appropriate treatment planning in different radiotherapy techniques, in this study, we evaluated the ability of the N-isopropylacrylamide (NIPAM) polymer gel to record the dose distribution resulting from the mixed neutron-gamma field of boron neutron capture therapy (BNCT). In this regard, a head phantom containing NIPAM gel was irradiated using the Tehran Research Reactor BNCT beam line, and then by a magnetic resonance scanner. Eventually, the $R_2$ maps were obtained in different slices of the phantom by analyzing T2-weighted images. The results show that NIPAM gel has a suitable potential for recording three-dimensional dose distribution in mixed neutron-gamma field dosimetry.

Dosimetric Comparison of Intensity Modulated Radiation, Proton Beam Therapy and Proton Arc Therapy for Para-aortic Lymph Node Tumor (대동맥림프절 종양에 대한 세기조절방사선치료, 양성자치료, 양성자회전치료의 선량 비교평가)

  • Kim, JungHoon
    • Journal of radiological science and technology
    • /
    • v.37 no.4
    • /
    • pp.331-339
    • /
    • 2014
  • To test feasibility of proton arc therapy (PAT) in the treatment of para-aortic lymph node tumor and compare its dosimetric properties with advanced radiotherapy techniques such as intensity modulated radiation therapy (IMRT) and conventional 3D conformal proton beam therapy (PBT). The treatment plans for para-aortic lymph node tumor were planned for 9 patients treated at our institution using IMRT, PBT, and PAT. Feasibility test and dosimetric evaluation were based on comparisons of dose volume histograms (DVHs) which reveal mean dose, $D_{30%}$, $D_{60%}$, $D_{90%}$, $V_{30%}$, $V_{60%}$, $V_{90%}$, organ equivalent doses (OEDs), normal tissue complication probability (NTCP), homogeneity index (HI) and conformity index (CI). The average doses delivered by PAT to the liver, kidney, small bowel, duodenum, stomach were 7.6%, 3%, 17.3%, 26.7%, and 14.4%, of the prescription dose (PD), respectively, which is higher than the doses delivered by IMRT (0.4%, 7.2%, 14.2%, 15.9%, and 12.8%, respectively) and PBT (4.9%, 0.5%, 14.12%, 16.1% 9.9%, respectively). The average homogeneity index and conformity index of tumor using PAT were 12.1 and 1.21, respectively which were much better than IMRT (21.5 and 1.47, respectively) and comparable to PBT (13.1 and 1.23, respectively). The result shows that both NTCP and OED of PAT are generally lower than IMRT and PBT. This study demonstrates that PAT is better in target conformity and homogeneity than IMRT and PBT but worse than IMRT and PBT for most of dosimetric factor which indicate that PAT is not recommended for the treatment of para-aortic lymph node tumor.

Commissionning of Dynamic Wedge Field Using Conventional Dosimetric Tools (선량 중첩 방식을 이용한 동적 배기 조사면의 특성 연구)

  • Yi Byong Yong;Nha Sang Kyun;Choi Eun Kyung;Kim Jong Hoon;Chang Hyesook;Kim Mi Hwa
    • Radiation Oncology Journal
    • /
    • v.15 no.1
    • /
    • pp.71-78
    • /
    • 1997
  • Purpose : To collect beam data for dynamic wedge fields using conventional measurement tools without the multi-detector system, such as the linear diode detectors or ionization chambers. Materials and Methods : The accelerator CL 2100 C/D has two photon energies of 6MV and 15MV with dynamic wedge an91es of 15o, 30o, 45o and 60o. Wedge transmission factors, percentage depth doses(PDD's) and dose Profiles were measured. The measurements for wedge transmission factors are performed for field sizes ranging from $4\times4cm^2\;to\;20\times20cm^2$ in 1-2cm steps. Various rectangular field sizes are also measured for each photon energy of 6MV and 15MV, with the combination of each dynamic wedge angle of 15o 30o. 45o and 60o. These factors are compared to the calculated wedge factors using STT(Segmented Treatment Table) value. PDD's are measured with the film and the chamber in water Phantom for fixed square field. Converting parameters for film data to chamber data could be obtained from this procedure. The PDD's for dynamic wedged fields could be obtained from film dosimetry by using the converting parameters without using ionization chamber. Dose profiles are obtained from interpolation and STT weighted superposition of data through selected asymmetric static field measurement using ionization chamber. Results : The measured values of wedge transmission factors show good agreement to the calculated values The wedge factors of rectangular fields for constant V-field were equal to those of square fields The differences between open fields' PDDs and those from dynamic fields are insignificant. Dose profiles from superposition method showed acceptable range of accuracy(maximum 2% error) when we compare to those from film dosimetry. Conclusion : The results from this superposition method showed that commissionning of dynamic wedge could be done with conventional dosimetric tools such as Point detector system and film dosimetry winthin maximum 2% error range of accuracy.

  • PDF

A Study of Dosimetric Characteristics of a Diamond Detector for Small Field Photon Beams (광자선 소조사면에 대한 다이아몬드 검출기의 선량특성에 관한 연구)

  • Loh, John-K.;Park, Sung-Y.;Shin, Dong-O.;Kwon, Soo-I.;Lee, Kil-D.;Kim, Woo-C.;Cho, Young-K.
    • Journal of Radiation Protection and Research
    • /
    • v.24 no.4
    • /
    • pp.195-203
    • /
    • 1999
  • It is difficult to determine dosimetric characteristics for small field photon beams since such small fields do not achieve complete lateral electronic equilibrium and have steep dose gradients. Dosimetric characteristics of small field 4, 6, and 10 MeV photon beams have been measured in water with a diamond detector and compared to measurements using small volume cylindrical and plane parallel ionization chambers. Percent depth dose (PDD) and beam profiles for 6 and 10 MeV photon beams were measured with diamond detector and cylindrical ion chamber for small fields ranging from $1{\times}1\;to\;4{\times}4cm^2$. Total scatter factors($S_{c,p}$) for 4, 6, and 10 MeV photon beams were measured with diamond detector, cylindrical and plane parallel ion chambers for small fields ranging from $1{\times}1\;to\;4{\times}4cm^2$. The $S_{c,p}$ factors obtained with three detectors for 4, 6, and 10 MeV photon beams agreed well ($\pm1.2%$) for field sizes greater than $2{\times}2,\;2.5{\times}2.5,\;and\;3{\times}3\;cm^2$, respectively. For smaller field sizes, the cylindrical and plane parallel ionization chambers measure a smaller $S_{c,p}$ factor, as a result of the steep dose gradients across their sensitive volumes. The PDD values obtained with diamond detector and cylindrical ionization chamber for 6 and 10MeV photon beams agreed well ($\pm1.5%$) for field sizes greater than $4{\times}4\;cm^2$. For smaller field sizes, diamond detector produced a depth-dose curve which had a significantly shallower falloff than that obtained from the measurements of relative depth-dose with a cylindrical ionization chamber. For the measurements of beam profiles, a distortion in terms of broadened penumbra was observed with a cylindrical ionization chamber since diamond detector exhibited higher spatial resolution. The diamond detector with small sensitive volume, near water equivalent, and high spatial resolution is suitable detector compared to ionization chambers for the measurements of small field photon beams.

  • PDF

Comparison of Dosimetry Protocols in High Energy Electron Beams (고에너지 전자선에 대한 표준측정법간의 비교)

  • 박성용;서태석;김회남;신동오;지영훈;군수일;이길동;추성실;최보영
    • Progress in Medical Physics
    • /
    • v.9 no.4
    • /
    • pp.267-276
    • /
    • 1998
  • Any detector inserted into a phantom should have such a geometry that it caused as small as possible perturbation of the electron fluence. Plane parallel chambers meet this requirement better than other chambers of configurations. IAEA protocol recommends the use of plane parallel chambers for this reason. However, the cylindrical chambers are widely used for convenient. The purpose of this study is to evaluate the absorbed dose due to the differences of four different dosimetry protocols such as IAEA protocol using cylindrical chamber, TG 21 protocol using cylindrical chamber, Markus protocol using plane parallel chamber, and TG 39 report for the calibration of plane parallel chamber in electron beams. Depth-ionization measurements for the electron beams of nominal energy 6, 9, 12, 15, and 18 MeV from Siemens accelerator with a 10$\times$10 cm$^2$ field size were made using a radiation field analyser with 0.125 cc ion chamber. Dosimetric measurements by IAEA and TG 21 protocol were made with a farmer type ionization chamber in solid water for each electron energy, respectively. Dosimetric measurements by Markus protocol were made with a plane parallel ionization chamber in solid water for each electron energy, respectively. The cavity-gas calibration factor for the plane parallel chamber was obtained with the use of 18 MeV electron beam as guided by TG 39 report. Dosimetric measurements by TG 39 were performed with a plane parallel ionization chamber in solid water for each electron energy, respectively. For all the energies and protocols, measurements were made along the central axis of the distance of 100 cm (SSD = 100 cm) with 10$\times$10 cm$^2$ field size at the depth of d$_{max}$ for each electron beam, respectively. In the case of 18 MeV, the discrepancy of 0.9 % between IAEA and TG 21 was found and the two protocols were agreed within 0.7 % for other energies. In the case of 18 MeV and 6 MeV, the discrepancies of $\pm$ 0.8 % between Markus and TG 39 was found, respectively and the two protocols were agreed within 0.5 % for other energies. Since the discrepancy of 1.6 % between cylindrical and plane parallel chamber was found for 18 MeV, it is suggested to get the calibration factor using other method as guided. by TG 39.9.

  • PDF

Measurement of low energy beta radiation from Ni-63 by using peeled-off Gafchromic EBT3 film

  • Ji, Wanook;Kim, Jong-Bum;Kim, Jin-Joo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3811-3815
    • /
    • 2022
  • Ni-63 is pure beta source which emits low energy beta particles. The Ni-63 sources were fabricated to develop the beta-voltaic battery which converts decay energy into electrical energy for power generation. Activity distribution of the source was important factor of power producibility of the beta-voltaic battery. Liquid scintillation counter widely used for measurement of low energy beta emitters was not suitable to measure activity distribution. In this study, we used the peeled-off Gafchromic™ EBT3 film to measure the activity distribution of the Ni-63 source. Absorbed dose was increased proportionally to the source activity and exposure duration. The low energy beta particles could transport the energy into the active layer without the polyester protective layer. Also, Activity distribution was measured by using the peeled-off EBT3 film. Two-dimensional dosimetric distribution was suitable to measure the activity distribution. To use the peeled-off EBT3 film is user-friendly and cost-effective method for quality assurance of the Ni-63 sources for the beta-voltaic battery.

Design of Multipurpose Phantom for External Audit on Radiotherapy

  • Lim, Sangwook
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.122-129
    • /
    • 2021
  • Purpose: This study aimed to design a multipurpose dose verification phantom for external audits to secure safe and optimal radiation therapy. Methods: In this study, we used International Atomic Energy Agency (IAEA) LiF powder thermoluminescence dosimeter (TLD), which is generally used in the therapeutic radiation dose assurance project. The newly designed multipurpose phantom (MPP) consists of a container filled with water, a TLD holder, and two water-pressing covers. The size of the phantom was designed to be sufficient (30×30×30 cm3). The water container was filled with water and pressed with the cover for normal incidence to be fixed. The surface of the MPP was devised to maintain the same distance from the source at all times, even in the case of oblique incidence regardless of the water level. The MPP was irradiated with 6, 10, and 15 MV photon beams from Varian Linear Accelerator and measured by a 1.25 cm3 ionization chamber to get the correction factors. Monte Carlo (MC) simulation was also used to compare the measurements. Results: The result obtained by MC had a relatively high uncertainty of 1% at the dosimetry point, but it showed a correction factor value of 1.3% at the 5 cm point. The energy dependence was large at 6 MV and small at 15 MV. Various dosimetric parameters for external audits can be performed within an hour. Conclusions: The results allow an objective comparison of the quality assurance (QA) of individual hospitals. Therefore, this can be employed for external audits or QA systems in radiation therapy institutions.

Estimation of Jaw and MLC Transmission Factor Obtained by the Auto-modeling Process in the Pinnacle3 Treatment Planning System (피나클치료계획시스템에서 자동모델화과정으로 얻은 Jaw와 다엽콜리메이터의 투과 계수 평가)

  • Hwang, Tae-Jin;Kang, Sei-Kwon;Cheong, Kwang-Ho;Park, So-Ah;Lee, Me-Yeon;Kim, Kyoung-Ju;Oh, Do-Hoon;Bae, Hoon-Sik;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.20 no.4
    • /
    • pp.269-276
    • /
    • 2009
  • Radiation treatment techniques using photon beam such as three-dimensional conformal radiation therapy (3D-CRT) as well as intensity modulated radiotherapy treatment (IMRT) demand accurate dose calculation in order to increase target coverage and spare healthy tissue. Both jaw collimator and multi-leaf collimators (MLCs) for photon beams have been used to achieve such goals. In the Pinnacle3 treatment planning system (TPS), which we are using in our clinics, a set of model parameters like jaw collimator transmission factor (JTF) and MLC transmission factor (MLCTF) are determined from the measured data because it is using a model-based photon dose algorithm. However, model parameters obtained by this auto-modeling process can be different from those by direct measurement, which can have a dosimetric effect on the dose distribution. In this paper we estimated JTF and MLCTF obtained by the auto-modeling process in the Pinnacle3 TPS. At first, we obtained JTF and MLCTF by direct measurement, which were the ratio of the output at the reference depth under the closed jaw collimator (MLCs for MLCTF) to that at the same depth with the field size $10{\times}10\;cm^2$ in the water phantom. And then JTF and MLCTF were also obtained by auto-modeling process. And we evaluated the dose difference through phantom and patient study in the 3D-CRT plan. For direct measurement, JTF was 0.001966 for 6 MV and 0.002971 for 10 MV, and MLCTF was 0.01657 for 6 MV and 0.01925 for 10 MV. On the other hand, for auto-modeling process, JTF was 0.001983 for 6 MV and 0.010431 for 10 MV, and MLCTF was 0.00188 for 6 MV and 0.00453 for 10 MV. JTF and MLCTF by direct measurement were very different from those by auto-modeling process and even more reasonable considering each beam quality of 6 MV and 10 MV. These different parameters affect the dose in the low-dose region. Since the wrong estimation of JTF and MLCTF can lead some dosimetric error, comparison of direct measurement and auto-modeling of JTF and MLCTF would be helpful during the beam commissioning.

  • PDF