• Title/Summary/Keyword: Dosimetric error

Search Result 30, Processing Time 0.023 seconds

A study on dosimetric comparison of craniospinal irradiation using tomotherpy and reproducibility of position (토모테라피를 이용한 뇌척수조사의 선량적 비교와 자세 재현성에 대한 고찰)

  • Lee, Heejeong;Kim, Jooho;Lee, Sangkyu;Yoon, Jongwon;Cho, Jeonghee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.1
    • /
    • pp.69-76
    • /
    • 2017
  • Purpose: The purpose of this study was to verify dosimetric results and reproducibility of position during craniospinal irradiation (CSI) using tomotherapy (Accuray Incorporated, USA). Also, by comparing with conventional CSI Technique, we confirmed the efficiency of using a Tomotherapy. Materials and Methods: 10 CSI patients who get tomotherapy participate. Patient-specific quality assurances (QA) for each patient are conducted before treatment. When treating, we took Megavoltage Computed Tomography (MVCT) that range of head and neck before treatment, L spine area after treatment. Also we conducted in-vivo dosimetry to check a scalp dose. Finally, we made a 3D conventional radiation therapy(3D-CRT) of those patients to compare dosimetric differences with tomotherapy treatment planning. Results: V107, V95 of brain is 0 %, 97.2 % in tomotherapy, and 0.3 %, 95.1 % in 3D-CRT. In spine, value of V107, V95 is 0.2 %, 18.6 % in tomotherapy and 89.6 %, 69.9 % in 3D-CRT. Except kidney and lung, tomotherapy reduced normal organ doses than 3D-CRT. The maximum positioning error value of X, Y, Z was 10.2 mm, -8.9 mm, -11.9 mm. Through in-vivo dosimetry, the average of scalp dose was 67.8 % of prescription dose. All patient-specific QA were passed by tolerance value. Conclusion: CSI using tomotherapy had a risk of parallel organ such as lung and kidney because of integral dose in low dose area. However, it demonstrated dosimetric superiority at a target and saved normal organ to reduce high dose. Also results of reproducibility were not exceeded margins that estimated treatment planning and invivo dosimetry showed to reduce scalp dose. Therefore, CSI using tomotherapy is considered to efficient method to make up for 3D-CRT.

  • PDF

Dosimetric Analysis of Respiratory-Gated RapidArc with Varying Gating Window Times (호흡연동 래피드아크 치료 시 빔 조사 구간 설정에 따른 선량 변화 분석)

  • Yoon, Mee Sun;Kim, Yong-Hyeob;Jeong, Jae-Uk;Nam, Taek-Keun;Ahn, Sung-Ja;Chung, Woong-Ki;Song, Ju-Young
    • Progress in Medical Physics
    • /
    • v.26 no.2
    • /
    • pp.87-92
    • /
    • 2015
  • The gated RapidArc may produce a dosimetric error due to the stop-and-go motion of heavy gantry which can misalign the gantry restart position and reduce the accuracy of important factors in RapidArc delivery such as MLC movement and gantry speed. In this study, the effect of stop-and-go motion in gated RapidArc was analyzed with varying gating window time, which determines the total number of stop-and-go motions. Total 10 RapidArc plans for treatment of liver cancer were prepared. The RPM gating system and the moving phantom were used to set up the accurate gating window time. Two different delivery quality assurance (DQA) plans were created for each RapidArc plan. One is the portal dosimetry plan and the other is MapCHECK2 plan. The respiratory cycle was set to 4 sec and DQA plans were delivered with three different gating conditions: no gating, 1-sec gating window, and 2-sec gating window. The error between calculated dose and measured dose was evaluated based on the pass rate calculated using the gamma evaluation method with 3%/3 mm criteria. The average pass rates in the portal dosimetry plans were $98.72{\pm}0.82%$, $94.91{\pm}1.64%$, and $98.23{\pm}0.97%$ for no gating, 1-sec gating, and 2-sec gating, respectively. The average pass rates in MapCHECK2 plans were $97.80{\pm}0.91%$, $95.38{\pm}1.31%$, and $97.50{\pm}0.96%$ for no gating, 1-sec gating, and 2-sec gating, respectively. We verified that the dosimetric accuracy of gated RapidArc increases as gating window time increases and efforts should be made to increase gating window time during the RapidArc treatment process.

Evaluation of Absorbed Dose for the Right Lung and Surrounding Organs of the Computational Human Phantom in Brachytherapy by Monte Carlo Simulation (근접방사선치료 시 몬테카를로 전산모사를 이용한 인체전산팬텀의 우측 폐와 주변 장기 선량평가)

  • Lee, Jun-Seong;Kim, Yang-Soo;Kim, Min-Gul;Kim, Jung-Soo;Lee, Sun-Young
    • Journal of radiological science and technology
    • /
    • v.43 no.6
    • /
    • pp.443-451
    • /
    • 2020
  • This study is to evaluate absorbed dose from right lung for brachytherapy and to estimate the effects of tissue heterogeneities on dose distribution for Iridium-192 source using Monte Carlo simulation. The study employed Geant4 code as Monte Carlo simulation to calculate the dosimetry parameters. The dose distribution of Iridium-192 source in solid water equivalent phantom including aluminium plate or steel plate inserted was calculated and compared with the measured dose by the ion chamber at various distances. And the simulation was used to evaluate the dose of gamma radiation absorbed in the lung organ and other organs around it. The dose distribution embedded in right lung was calculated due to the presence of heart, thymus, spine, stomach as well as left lung. The geometry of the human body was made up of adult male MIRD type of the computational human phantom. The dosimetric characteristics obtained for aluminium plate inserted were in good agreement with experimental results within 4%. The simulation results of steel plate inserted agreed well with a maximum difference 2.75%. Target organ considered to receive a dose of 100%, the surrounding organs were left the left lung of 3.93%, heart of 10.04%, thymus of 11.19%, spine of 12.64% and stomach of 0.95%. When the statistical error is performed for the computational human phantom, the statistical error of value is under 1%.

Robust Planning of Intensity-modulated Proton Therapy for Prostate Cancer (전립선암 치료를 위한 세기조절 양성자 로버스트 치료계획)

  • Park, Su Yeon;Kim, Jong Sik;Park, Ju Young;Park, Won;Ju, Sang Gyu
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.1
    • /
    • pp.25-31
    • /
    • 2013
  • Purpose: The aim of this study is to evaluate the dosimetric properties of robust planning strategy for plain intensity-modulated proton therapy (IMPT) taking into account of the uncertainties of effective proton range and set up error as compared to photon intensity-modulated radiation therapy (photon-IMRT) in prostate cancer treatment. Materials and Methods: The photon-IMRT (7 beams, step & shoot), plain-IMPT (2, 4, and 7 portals), and robust- IMPT plans, which was recalculated the plain-IMPT based on the uncertainties of range error (${\pm}5%$) and set up error (0.5 cm), were evaluated for five prostate cancer patients prescribed by 70 Gy/35 fractions. To quantitatively evaluate the dose distributions, several parameters such as maximum dose, minimum dose, mean dose, conformity index (CI), and homogeneity index (HI) for PTV as well as dose-volume index of VxGy for OARs were calculated from dose-volume histograms. Results: Robust-IMPT showed superior dose distributios in the PTV and OARs as compared to plain-IMPT and photon-IMRT. Like plain-IMPT, robust-IMPT were resulted in dose fluctuation around OARs, while better homogeneity and conformity in PTVs and lower mean dose in OARs as compared to photon-IMRT. Conclusion: In consideration with the effective range correction and set up movement using robustness in IMPT plan, the dosimetric uncertainties from plain-IMPT could substantially reduce and suggest more effective solutions than photon-IMRT in prostate cancer treatment.

  • PDF

Performance Evaluation of Stealth Chamber as a Novel Reference Chamber for Measuring Percentage Depth Dose and Profile of VitalBeam Linear Accelerator (VitalBeam 선형가속기의 심부선량백분율과 측방선량분포 측정을 위한 새로운 기준 전리함으로서 스텔스 전리함의 성능 평가)

  • Kim, Yon-Lae;Chung, Jin-Beom;Kang, Seong-Hee;Kang, Sang-Won;Kim, Kyeong-Hyeon;Jung, Jae-Yong;Shin, Young-Joo;Suh, Tae-Suk;Lee, Jeong-Woo
    • Journal of radiological science and technology
    • /
    • v.41 no.3
    • /
    • pp.201-207
    • /
    • 2018
  • The purpose of this study is to evaluate the performance of a "stealth chamber" as a novel reference chamber for measuring percentage depth dose (PDD) and profile of 6, 8 and 10 MV photon energies. The PDD curves and dose profiles with fields ranging from $3{\times}3$ to $25{\times}25cm^2$ were acquired from measurements by using the stealth chamber and CC 13 chamber as reference chamber. All measurements were performed with Varian VitalBeam linear accelerator. In order to assess the performance of stealth chamber, PDD curves and profiles measured with stealth chamber were compared with measurement data using CC13 chamber. For PPDs measured with both chambers, the dosimetric parameters such as $d_{max}$ (depth of maximum dose), $D_{50}$ (PDD at 50 mm depth), and $D_{100}$ (PDD at 100 mm depth) were analyzed. Moreover, root mean square error (RMSE) values for profiles at $d_{max}$ and 100 mm depth were evaluated. The measured PDDs and profiles between the stealth chamber and CC13 chamber as reference detector had almost comparable. For PDDs, the evaluated dosimetric parameters were observed small difference (<1%) for all energies and field sizes, except for $d_{max}$ less than 2 mm. In addition, the difference of RMSEs for profiles at $d_{max}$ and 100 mm depth was similar for both chambers. This study confirmed that the use of stealth chamber for measuring commission beam data is a feasible as reference chamber for fields ranging from $3{\times}3$ to $20{\times}20cm^2$. Furthermore, it has an advantage with respect to measurement of the small fields (less than $3{\times}3cm^2$ field) although not performed in this study.

Evaluation of Dual-channel Compound Method for EBT3 Film Dosimetry

  • Kang, Sang-Won;Chung, Jin-Beom;Kim, Kyeong-Hyeon;Eom, Keun-Yong;Song, Changhoon;Lee, Jeong-Woo;Cho, Woong;Suh, Tae Suk
    • Progress in Medical Physics
    • /
    • v.28 no.1
    • /
    • pp.16-21
    • /
    • 2017
  • This study assessed the feasibility of a dual-channel (DC) compound method for film dosimetry. The red channel (RC) is usually used to ensure dosimetric quality using a conventional fraction dose because the RC is more accurate at low doses within 3 Gy than is the green channel (GC). However, the RC is prone to rapid degradation of sensitivity at high doses, while degradation of the GC is slow. In this study, the DC compound method combining the RC and GC was explored as a means of providing accurate film dosimetry for high doses. The DC compound method was evaluated at various dose distributions using EBT3 film inserted in a solid-water phantom. Measurements with $10{\times}20cm^2$ radiation field and $60^{\circ}$ dynamic-wedge were done. Dose distributions acquired using the RC and GC were analyzed with root-mean-squares-error (RMSE) and gamma analyses. The DC compound method was used based on the RC after correcting the GC for high doses in the gamma analysis. The RC and GC produced comparatively more accurate RMSE values for low and high doses, respectively. Gamma passing rates with an acceptance criterion of 3%/3 mm revealed that the RC provided rapid reduction in the high dose region, while the GC displayed a gradual decrease. In the whole dose range, the DC compound method had the highest agreement (93%) compared with single channel method using either the RC (80%) or GC (85%). The findings indicate that the use of DC compound method is more appropriate in dosimetric quality assurance for radiotherapy using high doses.

Location Error of the Dens in a Two-Dimensional Set-up Verification During Head and Neck Radiotherapy (뇌.두경부 방사선치료 시 전자조사문영상장치를 이용한 세트업 오차 확인에서 제2경추 치상돌기 위치의 임상적 의의)

  • Kim, Dong-Hyun;Kim, Won-Taek;Ki, Yong-Gan;Nam, Ji-Ho;Lee, Mi-Ran;Jeon, Ho-Sang;Park, Dal;Kim, Dong-Won
    • Radiation Oncology Journal
    • /
    • v.29 no.2
    • /
    • pp.107-114
    • /
    • 2011
  • Purpose: To assess the degree and clinical impact of location error of the dens on the X-axis during radiotherapy to brain and head and neck tumors. Materials and Methods: Twenty-one patients with brain tumors or head and neck tumors who received three-dimensional conformal radiation therapy or intensity-modulated radiation therapy from January 2009 to June 2010 were included in this study. In comparison two-dimensional verification portal images with initial simulation images, location error of the nasal septum and the dens on the X-axis was measured. The effect of set-up errors of the dens was simulated in the planning system and analyzed with physical dose parameters. Results: A total of 402 portal images were reviewed. The mean location error at the nasal septum was 0.16 mm and at the dens was 0.33 mm (absolute value). Location errors of more than 3 mm were recorded in 43 cases (10.7%) at the nasal septum, compared to 133 cases (33.1%) at the dens. There was no case with a location error more than 5 mm at the nasal septum, compared to 11 cases (2.7%) at the dens. In a dosimetric simulation, a location error more than 5 mm at the dens could induce a reduction in the clinical target volume 1 coverage (V95: 100%${\rightarrow}$87.2%) and overdosing to a critical normal organ (Spinal cord V45: <0.1%${\rightarrow}$12.6%). Conclusion: In both brain and head and neck radiotherapy, a relatively larger set-up error was detected at the dens than the nasal septum when using an electronic portal imaging device. Consideration of the location error of the dens is necessary at the time of the precise radiation beam delivery in two-dimensional verification systems.

Dosimetric Analysis on the Effect of Target Motion in the Delivery of Conventional IMRT, RapidArc and Tomotherapy

  • Song, Ju-Young
    • Progress in Medical Physics
    • /
    • v.28 no.4
    • /
    • pp.164-170
    • /
    • 2017
  • One of the methods to consider the effect of respiratory motion of a tumor target in radiotherapy is to establish a treatment plan with the internal target volume (ITV) created based on an accurate analysis of the target motion displacement. When this method is applied to intensity modulated radiotherapy (IMRT), it is expected to yield a different treatment dose distribution under the motion condition according to the IMRT method. In this study, we prepared ITV-based IMRT plans with conventional IMRT using fixed gantry angle beams, RapidArc using volumetric modulated arc therapy, and tomotherapy using helical therapy. Then, the variation in dose distribution caused by the target motion was analyzed by the dose measurement in the actual motion condition. A delivery quality assurance plan was prepared for the established IMRT plan and the dose distribution in the actual motion condition was measured and analyzed using a two-dimensional diode detector placed on a moving phantom capable of simulating breathing movements. The dose measurement was performed considering only a uniform target shape and motion in the superior-inferior (SI) direction. In this condition, it was confirmed that the error of the dose distribution due to the target motion is minimum in tomotherapy. This is thought to be due to the characteristic of tomotherapy that treats the target sequentially by dividing it into several slices. When the target shape is uniform and the main target motion direction is SI, it is considered that tomotherapy for the ITV-based IMRT method has a characteristic which can reduce the dose difference compared with the plan dose under the target motion condition.

Dosimetric Verification of Dynamic Conformal Arc Radiotherapy (입체조형 동적회전조사 방사선치료의 선량 검증)

  • Kim Tae Hyun;Shin Dong Ho;Lee Doo Hyun;Park Sung Yong;Yun Myung Guen;Shin Kyung Hwan;Py Hong Ryull;Kim Joo-Young;Kim Dae Yong;Cho Kwan Ho;Yang Dae-Sik;Kim Chul-Yong
    • Progress in Medical Physics
    • /
    • v.16 no.4
    • /
    • pp.166-175
    • /
    • 2005
  • The purpose of this study is to develop the optimization method for adjusting the film isocenter shift and to suggest the quantitative acceptable criteria for film dosimetry after optimization In the dynamic conformal arc radiation therapy (DCAR). The DCAR planning was peformed In 7 patients with brain metastasis. Both absolute dosimetry with ion chamber and relative film dosimetry were peformed throughout the DCAR using BrainLab's micro-multileaf collimator. An optimization method for obtaining the global minimum was used to adjust for the error in the film isocenter shift, which is the largest pan of systemic errors. The mean of point dose difference between measured value using ion chamber and calculated value acquired from planning system was $0.51{\pm}0.43\%$ and maximum was $1.14\%$ with absolute dosimetry These results were within the AAPM criteria of below $5\%$. The translation values of film isocenter shift with optimization were within ${\pm}$1 mm in all patients. The mean of average dose difference before and after optimization was $1.70{\pm}0.35\%$ and $1.34{\pm}0.20\%$, respectively, and the mean ratios over $5\%$ dose difference was $4.54{\pm}3.94\%$ and $0.11{\pm}0.12\%$, respectively. After optimization, the dose differences decreased dramatically and a ratio over $5\%$ dose difference and average dose difference was less than $2\%$. This optimization method is effective in adjusting the error of the film isocenter shift, which Is the largest part of systemic errors, and the results of this research suggested the quantitative acceptable criteria could be accurate and useful in clinical application of dosimetric verification using film dosimetry as follows; film isocenter shift with optimization should be within ${\pm}$1 mm, and a ratio over $5\%$ dose difference and average dose difference were less than $2\%$.

  • PDF

Commissionning of Dynamic Wedge Field Using Conventional Dosimetric Tools (선량 중첩 방식을 이용한 동적 배기 조사면의 특성 연구)

  • Yi Byong Yong;Nha Sang Kyun;Choi Eun Kyung;Kim Jong Hoon;Chang Hyesook;Kim Mi Hwa
    • Radiation Oncology Journal
    • /
    • v.15 no.1
    • /
    • pp.71-78
    • /
    • 1997
  • Purpose : To collect beam data for dynamic wedge fields using conventional measurement tools without the multi-detector system, such as the linear diode detectors or ionization chambers. Materials and Methods : The accelerator CL 2100 C/D has two photon energies of 6MV and 15MV with dynamic wedge an91es of 15o, 30o, 45o and 60o. Wedge transmission factors, percentage depth doses(PDD's) and dose Profiles were measured. The measurements for wedge transmission factors are performed for field sizes ranging from $4\times4cm^2\;to\;20\times20cm^2$ in 1-2cm steps. Various rectangular field sizes are also measured for each photon energy of 6MV and 15MV, with the combination of each dynamic wedge angle of 15o 30o. 45o and 60o. These factors are compared to the calculated wedge factors using STT(Segmented Treatment Table) value. PDD's are measured with the film and the chamber in water Phantom for fixed square field. Converting parameters for film data to chamber data could be obtained from this procedure. The PDD's for dynamic wedged fields could be obtained from film dosimetry by using the converting parameters without using ionization chamber. Dose profiles are obtained from interpolation and STT weighted superposition of data through selected asymmetric static field measurement using ionization chamber. Results : The measured values of wedge transmission factors show good agreement to the calculated values The wedge factors of rectangular fields for constant V-field were equal to those of square fields The differences between open fields' PDDs and those from dynamic fields are insignificant. Dose profiles from superposition method showed acceptable range of accuracy(maximum 2% error) when we compare to those from film dosimetry. Conclusion : The results from this superposition method showed that commissionning of dynamic wedge could be done with conventional dosimetric tools such as Point detector system and film dosimetry winthin maximum 2% error range of accuracy.

  • PDF