• Title/Summary/Keyword: Dose volume histogram (DVH)

Search Result 98, Processing Time 0.023 seconds

Evaluation of Dose Variation according to Air Gap in Thermoplastic Immobilization Device in Carbon Ion (탄소입자 치료 시 열가소성 고정기구의 공기층에 따른 선량 변화 평가)

  • Ye-jin Na;Ji-Won Jang;Se-Wuk Jang;Hyo-Kuk Park;Sang-Kyu Lee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.35
    • /
    • pp.33-39
    • /
    • 2023
  • Purpose: The purpose of this study is to find out the dose variation according to thickness of the air gap between the patient's body surface and immobilization device in the treatment plan. Materials and Methods : Four conditions were created by adjusting the air gap thickness using 5 mm bolus, ranging from 0 mm to 3 mm bolus. Immobilization was placed on top in each case. And computed tomography was used to acquire images. The treatment plan that 430 cGy (Relative Biological Effectiveness,RBE) is irradiated 6 times and the dose of 2580 cGy (RBE) is delivered to 95% of Clinical Target Volume (CTV). The dose on CTV was evaluated by Full Width Half Maximum (FWHM) of the lateral dose profile and skin dose was evaluated by Dose Volume Histogram (DVH). Result: Results showed that the FWHM values of the lateral dose profile of CTV were 4.89, 4.86, 5.10, and 5.10 cm. The differences in average values at the on the four conditions were 3.25±1.7 cGy (RBE) among D95% and 1193.5±10.2 cGy (RBE) among D95% respectively. The average skin volume at 1% of the prescription dose was 83.22±4.8%, with no significant differences in both CTV and skin. Conclusion: When creating a solid-type immobilization device for carbon particle therapy, a slight air gap is recommended to ensure that it does not extend beyond the dose application range of the CTV.

  • PDF

The Effect of Volume Reduction on Computed Treatment Planning during Head and Neck IMRT and VMAT (두경부 IMRT 및 VMAT 시 체적 감소가 전산화치료계획에 미치는 영향)

  • Ki-Cheon Um;Gha-Jung Kim;Geum-Mun Back
    • Journal of radiological science and technology
    • /
    • v.46 no.3
    • /
    • pp.239-246
    • /
    • 2023
  • In this study, we assessed the effect of reduction of tumor volume in the head and neck cancer by using RANDO phantom in Static Intensity-Modulated Radiation Therapy (S-IMRT) and Volumetric-Modulated Arc Therapy (VMAT) planning. RANDO phantom's body and protruding volumes were delineated by using Contour menu of Eclipse™ (Varian Medical System, Inc., Version 15.6, USA) treatment planning system. Inner margins of 2 mm to 10 mm from protruding volumes of the reference were applied to generate the parameters of reduced volume. In addition, target volume and Organ at Risk (OAR) volumes were delineated. S-IMRT plan and VMAT plan were designed in reference. These plans were assigned in the reduced volumes and dose was calculated in reduced volumes using preset Monitor unit (MU). Dose Volume Histogram (DVH) was generated to evaluate treatment planning. Conformity Index (CI) and R2 in reference S-IMRT were 0.983 and 0.015, respectively. There was no significant relationship between CI and the reduced volume. Homogeneity Index (HI) and R2 were 0.092 and 0.960, respectively. The HI increased when volume reduced. In reference VMAT, CI and R2 were 0.992 and 0.259, respectively. There was no relationship between the volume reduction and CI. On the other hand, HI and R2 were 0.078 and 0.895, respectively. The value of HI increased when the volume reduced. There was significant difference (p<0.05) between parameters (Dmean and Dmax) of normal organs of S-IMRT and VMAT except brain stem. Volume reduction affected the CI, HI and OAR dose. In the future, additional studies are necessary to incorporate the reduction of the volume in the clinical setting.

Comparative Study Between Respiratory Gated Conventional 2-D Plan and 3-D Conformal Plan for Predicting Radiation Hepatitis (간암에서 호흡주기를 고려한 2-차원 방사선 치료 방법과 3-차원 입체조형 치료방법에서 방사선 간염 예측의 비교연구)

  • Lee Sang-wook;Kim Gwi Eon;Chung Kap Soo;Lee Chang Geol;Seong Jinsil;Suh Chang Ok
    • Radiation Oncology Journal
    • /
    • v.16 no.4
    • /
    • pp.455-467
    • /
    • 1998
  • Purpose : To evaluate influences associated with radiation treatment planning obtained with the patient breathing freely. Materials and Methods : We compared reduction or elimination of planning target volume (PTV) margins with 2-D conventional plan with inclusion of PTV margins associated with breathing with 3-D conformal therapy. The respiratory non gated 3-D conformal treatment plans were compared with respiratory gated conventional 2-D plans in 4 patients with hepatocellular carcinomas. Isodose distribution, dose statistics, and dose volume histogram (DVH) of PTVs were used to evaluate differences between respiratory gated conventional 2-D plans and respiratory non gated 3-D conformal treatment plans. In addition. the risk of radiation exposure of surrounding normal liver and organs are evaluated by means of DVH and normal tissue complication probabilities (NTCPs). Results : The vertical movement of liver ranged 2-3 cm in all patients. We found no difference between respiratory gated 2-D plans and 3-D conformal treatment plans with the patients breathing freely. Treatment planning using DVH analysis of PTV and the normal liver was used for all patients. DVH and calculated NTCP showed no difference in respiratory gated 2-D plans and respiratory non gated 3-D conformal treatment plans. Conclusion : Respiratory gated radiation therapy was very important in hepatic tumors because radiation induced hepatitis was dependent on remaining normal liver volume. Further investigational studies for respiratory gated radiation.

  • PDF

Development of Model Plans in Three Dimensional Conformal Radiotherapy for Brain Tumors (뇌종양 환자의 3차원 입체조형 치료를 위한 뇌내 주요 부위의 모델치료계획의 개발)

  • Pyo Hongryull;Lee Sanghoon;Kim GwiEon;Keum Kichang;Chang Sekyung;Suh Chang-Ok
    • Radiation Oncology Journal
    • /
    • v.20 no.1
    • /
    • pp.1-16
    • /
    • 2002
  • Purpose : Three dimensional conformal radiotherapy planning is being used widely for the treatment of patients with brain tumor. However, it takes much time to develop an optimal treatment plan, therefore, it is difficult to apply this technique to all patients. To increase the efficiency of this technique, we need to develop standard radiotherapy plant for each site of the brain. Therefore we developed several 3 dimensional conformal radiotherapy plans (3D plans) for tumors at each site of brain, compared them with each other, and with 2 dimensional radiotherapy plans. Finally model plans for each site of the brain were decide. Materials and Methods : Imaginary tumors, with sizes commonly observed in the clinic, were designed for each site of the brain and drawn on CT images. The planning target volumes (PTVs) were as follows; temporal $tumor-5.7\times8.2\times7.6\;cm$, suprasellar $tumor-3\times4\times4.1\;cm$, thalamic $tumor-3.1\times5.9\times3.7\;cm$, frontoparietal $tumor-5.5\times7\times5.5\;cm$, and occipitoparietal $tumor-5\times5.5\times5\;cm$. Plans using paralled opposed 2 portals and/or 3 portals including fronto-vertex and 2 lateral fields were developed manually as the conventional 2D plans, and 3D noncoplanar conformal plans were developed using beam's eye view and the automatic block drawing tool. Total tumor dose was 54 Gy for a suprasellar tumor, 59.4 Gy and 72 Gy for the other tumors. All dose plans (including 2D plans) were calculated using 3D plan software. Developed plans were compared with each other using dose-volume histograms (DVH), normal tissue complication probabilities (NTCP) and variable dose statistic values (minimum, maximum and mean dose, D5, V83, V85 and V95). Finally a best radiotherapy plan for each site of brain was selected. Results : 1) Temporal tumor; NTCPs and DVHs of the normal tissue of all 3D plans were superior to 2D plans and this trend was more definite when total dose was escalated to 72 Gy (NTCPs of normal brain 2D $plans:27\%,\;8\%\rightarrow\;3D\;plans:1\%,\;1\%$). Various dose statistic values did not show any consistent trend. A 3D plan using 3 noncoplanar portals was selected as a model radiotherapy plan. 2) Suprasellar tumor; NTCPs of all 3D plans and 2D plans did not show significant difference because the total dose of this tumor was only 54 Gy. DVHs of normal brain and brainstem were significantly different for different plans. D5, V85, V95 and mean values showed some consistent trend that was compatible with DVH. All 3D plans were superior to 2D plans even when 3 portals (fronto-vertex and 2 lateral fields) were used for 2D plans. A 3D plan using 7 portals was worse than plans using fewer portals. A 3D plan using 5 noncoplanar portals was selected as a model plan. 3) Thalamic tumor; NTCPs of all 3D plans were lower than the 2D plans when the total dose was elevated to 72 Gy. DVHs of normal tissues showed similar results. V83, V85, V95 showed some consistent differences between plans but not between 3D plans. 3D plans using 5 noncoplanar portals were selected as a model plan. 4) Parietal (fronto- and occipito-) tumors; all NTCPs of the normal brain in 3D plans were lower than in 2D plans. DVH also showed the same results. V83, V85, V95 showed consistent trends with NTCP and DVH. 3D plans using 5 portals for frontoparietal tumor and 6 portals for occipitoparietal tumor were selected as model plans. Conclusion : NTCP and DVH showed reasonable differences between plans and were through to be useful for comparing plans. All 3D plans were superior to 2D plans. Best 3D plans were selected for tumors in each site of brain using NTCP, DVH and finally by the planner's decision.

Variation of optimization techniques for high dose rate brachytherapy in cervical cancer treatment

  • Azahari, Ahmad Naqiuddin;Ghani, Ahmad Tirmizi;Abdullah, Reduan;Jayamani, Jayapramila;Appalanaido, Gokula Kumar;Jalil, Jasmin;Aziz, Mohd Zahri Abdul
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1414-1420
    • /
    • 2022
  • High dose rate (HDR) brachytherapy treatment planning usually involves optimization methods to deliver uniform dose to the target volume and minimize dose to the healthy tissues. Four optimizations were used to evaluate the high-risk clinical target volume (HRCTV) coverage and organ at risk (OAR). Dose-volume histogram (DVH) and dosimetric parameters were analyzed and evaluated. Better coverage was achieved with PGO (mean CI = 0.95), but there were no significant mean CI differences than GrO (p = 0.03322). Mean EQD2 doses to HRCTV (D90) were also superior for PGO with no significant mean EQD2 doses than GrO (p = 0.9410). The mean EQD2 doses to bladder, rectum, and sigmoid were significantly higher for NO plan than PO, GrO, and PGO. PO significantly reduced the mean EQD2 doses to bladder, rectum, and sigmoid but compromising the conformity index to HRCTV. PGO was superior in conformity index (CI) and mean EQD2 doses to HRCTV compared with the GrO plan but not statistically significant. The mean EQD2 doses to the rectum by PGO plan slightly exceeded the limit from ABS recommendation (mean EQD2 dose = 78.08 Gy EQD2). However, PGO can shorten the treatment planning process without compromising the CI and keeping the OARs dose below the tolerance limit.

Optimization of CORVUS Planning System with PRIMART Linac for Intensity Modulated Radiation Therapy

  • Lee, Se-Byeong;Jino Bak;Cho, Kwang-Hwan;Chu, Sung-sil;Lee, Suk;Suh, Chang-ok
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.83-85
    • /
    • 2002
  • Yonsei Cancer Center introduced an IMRT System at the beginning of February, 2002. The system consists of CORVUS(NOMOS) inverse planning machine, LANTIS(SIEMENS), PRIMEVIEW and PRIMART Linac(SIEMENS). The optimization of CORVUS planning system with PRIMART is an important work to get an efficient treatment plan. So, we studied two Finite Size Pencil Beams, 1.0 x 1.0 cm$^2$ and 0.5 x 1.0 cm$^2$, and four leaf transmission sets, 5%, 10%, 20%, 33%. We compared the dose distribution of target volume and delivery efficiency of the plan results.

  • PDF

Impact of Respiratory Motion on Breast Cancer Intensity-modulated Radiation Therapy (유방암 세기조절방사선치료에서의 호흡운동 영향)

  • Chung, Weon Kuu;Chung, Mijoo;Shin, Dong Oh;Kim, Dong Wook
    • Progress in Medical Physics
    • /
    • v.27 no.2
    • /
    • pp.93-97
    • /
    • 2016
  • In this study, we evaluate the effect of respiration on the dose distribution in patient target volume (PTV) during intensity-modulated radiation therapy (IMRT) and research methods to reduce this impact. The dose distributions, homogeneity index (HI), coverage index (CVI), and conformity index of the PTV, which is calculated from the dose-volume histogram (DVH), are compared between the maximum intensity projection (MIP) image-based plan and other images at respiration phases of 30%, 60% and 90%. In addition, the reducing effect of complication caused by patient respiration is estimated in the case of a bolus and the expended PTV on the skin. The HI is increased by approximately twice, and the CVI is relatively decreased without the bolus at other respiration phases. With the bolus and expended PTV, the change in the dose distribution of the PTV is relatively small with patient respiration. Therefore, the usage of the bolus and expended PTV can be considered as one of the methods to improve the accuracy of IMRT in the treatment of breast cancer patients with respiratory motion.

Radiation-induced Pulmonary Toxicity following Adjuvant Radiotherapy for Breast Cancer (유방암 환자에서 보조적 방사선치료 후의 폐 손상)

  • Moon, Sung-Ho;Kim, Tae-Jung;Eom, Keun-Young;Kim, Jee-Hyun;Kim, Sung-Won;Kim, Jae-Sung;Kim, In-Ah
    • Radiation Oncology Journal
    • /
    • v.25 no.2
    • /
    • pp.109-117
    • /
    • 2007
  • [ $\underline{Purpose}$ ]: To evaluate the incidences and potential predictive factors for symptomatic radiation pneumonitis (SRP) and radiographic pulmonary toxicity (RPT) following adjuvant radiotherapy (RT) for patients with breast cancer. A particular focus was made to correlate RPT with the dose volume histogram (DVH) parameters based on three-dimensional RT planning (3D-RTP) data. $\underline{Materials\;and\;Methods}$: From September 2003 through February 2006, 171 patients with breast cancer were treated with adjuvant RT following breast surgery. A radiation dose of 50.4 Gy was delivered with tangential photon fields on the whole breast or chest wall. A single anterior oblique photon field for supraclavicular (SCL) nodes was added if indicated. Serial follow-up chest radiographs were reviewed by a chest radiologist. Radiation Therapy Oncology Group (RTOG) toxicity criteria were used for grading SRP and a modified World Health Organization (WHO) grading system was used to evaluate RPT. The overall percentage of the ipsilateral lung volume that received ${\geq}15\;Gy\;(V_{15}),\;20\;Gy\;(V_{20})$, and $30\;Gy\;(V_{30})$ and the mean lung dose (MLD) were calculated. We divided the ipsilateral lung into two territories, and defined separate DVH parameters, i.e., $V_{15\;TNGT},\;V_{20\;TNGT},\;V_{30\;TNGT},\;MLD_{TNGT}$, and $V_{15\;SCL},\;V_{20\;SCL},\;V_{30SCL},\;MLD_{SCL}$ to assess the relationship between these parameters and RPT. $\underline{Results}$: Four patients (2.1%) developed SRP (three with grade 3 and one with grade 2, respectively). There was no significant association of SRP with clinical parameters such as, age, pre-existing lung disease, smoking, chemotherapy, hormonal therapy and regional RT. When 137 patients treated with 3D-RTP were evaluated, 13.9% developed RPT in the tangent (TNGT) territory and 49.2% of 59 patients with regional RT developed RPT in the SCL territory. Regional RT (p<0.001) and age (p=0.039) was significantly correlated with RPT. All DVH parameters except for $V_{15\;TNGT}$ showed a significant correlation with RPT (p<0.05). $MLD_{TNGT}$ was a better predictor for RPT for the TNGT territory than $V_{15\;SCL}$ for the SCL territory. $\underline{Conclusion}$: The incidence of SRP was acceptable with the RT technique that was used. Age and regional RT were significant factors to predict RPT. The DVH parameter was good predictor for RPT for the SCL territory while $MLD_{TNGT}$ was a better predictor for RPT for the TNGT territory.

Dosimetric Evaluation of Plans Converted with the DVH-Based Plan Converter

  • Chun, Minsoo;Choi, Chang Heon;Kim, Jung-in;Yoo, Jeongmin;Lee, Sung Young;Kwon, Ohyun;Son, Jaeman;An, Hyun Joon;Kang, Seong-Hee;Park, Jong Min
    • Progress in Medical Physics
    • /
    • v.29 no.4
    • /
    • pp.157-163
    • /
    • 2018
  • Plans converted using dose-volume-histogram-based plan conversion (DPC) were evaluated by comparing them to the original plans. Changes in the dose volumetric (DV) parameters of five volumetric modulated arc therapy (VMAT) plans for head and neck (HN) cancer and five VMAT plans for prostate cancer were analyzed. For the HN plans, the homogeneity indices (HIs) of the three planning target volumes (PTV) increased by 0.03, 0.02, and 0.03, respectively, after DPC. The maximum doses to the PTVs increased by 1.20, 1.87, and 0.92 Gy, respectively, after DPC. The maximum doses to the optic chiasm, optic nerves, spinal cord, brain stem, lenses, and parotid glands increased after DPC by approximately 4.39, 3.62, 7.55, 7.96, 1.77, and 6.40 Gy, respectively. For the prostate plans after DPC, the HIs for the primary and boost PTVs increased by 0.05 and 0.03, respectively, and the maximum doses to each PTV increased by 1.84 and 0.19 Gy, respectively. After DPC, the mean doses to the rectum and femoral heads increased by approximately 6.19 and 2.79 Gy, respectively, and those to the bladder decreased by 0.20 Gy when summing the primary and boost plans. Because clinically unacceptable changes were sometimes observed after DPC, plans converted by DPC should be carefully reviewed before actual patient treatment.

The Effects of the Statistical Uncertainties in Monte Carlo Photon Dose Calculation for the Radiation Therapy (방사선 치료를 위한 몬테칼로 광자선 선량계산 시 통계적 불확실성 영향 평가)

  • Cheong, Kwang-Ho;Suh, Tae-Suk;Cho, Byung-Chul
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.2
    • /
    • pp.105-115
    • /
    • 2004
  • The Monte Carlo simulation requires very much time to obtain a result of acceptable accuracy. Therefore we should know the optimum number of history not to sacrifice time as well as the accuracy. In this study, we have investigated the effects of statistical uncertainties of the photon dose calculation. BEAMnrc and DOSXYZnrc systems were used for the Monte Carlo dose calculation and the case of mediastinum was simulated. The several dose calculation result from various number of histories had been obtained and analyzed using the criteria of isodose curve comparison, dose volume histogram comparison(DVH) and root mean-square differences(RMSD). Statistical uncertainties were observed most evidently in isodose curve comparison and RMSD while DVHs were less sensitive. The acceptable uncertainties $(\bar{{\Delta}D})$ of the Monte Carlo photon dose calculation for the radiation therapy were estimated within total 9% error or 1% error for over than $D_{max}/2$ voxels or voxels at maximum dose.