• Title/Summary/Keyword: Dose planning

Search Result 712, Processing Time 0.047 seconds

Planning and Dosimetric Study of Volumetric Modulated Arc Based Hypofractionated Stereotactic Radiotherapy for Acoustic Schwannoma - 6MV Flattening Filter Free Photon Beam

  • Swamy, Shanmugam Thirumalai;Radha, Chandrasekaran Anu;Arun, Gandhi;Kathirvel, Murugesan;Subramanian, Sai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.12
    • /
    • pp.5019-5024
    • /
    • 2015
  • Background: The purpose of this study was to assess the dosimetric and clinical feasibility of volumetric modulated arc based hypofractionated stereotactic radiotherapy (RapidArc) treatment for large acoustic schwannoma (AS >10cc). Materials and Methods: Ten AS patients were immobilized using BrainLab mask. They were subject to multimodality imaging (magnetic resonance and computed tomography) to contour target and organs at risk (brainstem and cochlea). Volumetric modulated arc therapy (VMAT) based stereotactic plans were optimized in Eclipse (V11) treatment planning system (TPS) using progressive resolution optimizer-III and final dose calculations were performed using analytical anisotropic algorithm with 1.5 mm grid resolution. All AS presented in this study were treated with VMAT based HSRT to a total dose of 25Gy in 5 fractions (5fractions/week). VMAT plan contains 2-4 non-coplanar arcs. Treatment planning was performed to achieve at least 99% of PTV volume (D99) receives 100% of prescription dose (25Gy), while dose to OAR's were kept below the tolerance limits. Dose-volume histograms (DVH) were analyzed to assess plan quality. Treatments were delivered using upgraded 6 MV un-flattened photon beam (FFF) from Clinac-iX machine. Extensive pretreatment quality assurance measurements were carried out to report on quality of delivery. Point dosimetry was performed using three different detectors, which includes CC13 ion-chamber, Exradin A14 ion-chamber and Exradin W1 plastic scintillator detector (PSD) which have measuring volume of $0.13cm^3$, $0.009cm^3$ and $0.002cm^3$ respectively. Results: Average PTV volume of AS was 11.3cc (${\pm}4.8$), and located in eloquent areas. VMAT plans provided complete PTV coverage with average conformity index of 1.06 (${\pm}0.05$). OAR's dose were kept below tolerance limit recommend by American Association of Physicist in Medicine task group-101(brainstem $V_{0.5cc}$ < 23Gy, cochlea maximum < 25Gy and Optic pathway <25Gy). PSD resulted in superior dosimetric accuracy compared with other two detectors (p=0.021 for PSD.

The evaluation of usefulness of the newly manufactured immobilization device (치료보조기구의 제작 및 유용성 평가)

  • Seo Seok Jin;Kim Chan Yoeng;Lee Je Hee;Park Heung Deuk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.17 no.1
    • /
    • pp.45-55
    • /
    • 2005
  • Purpose : To evaluate the usefulness of the handmade patient immobilization device and to report the clinical results of it. Materials and methods : We made two fusion images and analyzed those images. One image is made with diagnostic MR image and CT image, the other with therapeutic planning MR image and CT image. With open head holder, we measured the skin dose and attenuation dose. Also, we made the planning CT couch plate with acrylic plate and styrofoam and compared artifact. Results : We could get more accurate fusion image when we use MR head holder(within 2mm error). The skin dose was reduced 2 times and the attenuation dose was reduced more than $20\%$ when open head holder used. The planning CT couch plate was more convenient than conventional board and reduced artifact remarkably. Conclusion : We could verify the localization point in the MR image which is taken with MR head holder. So we could fuse the image more accurately. The same method could be applied to PET and US image, if the alike immobilization device used. With open head holder, the skin dose and the attenuation dose was reduced. And those above devices could substitute for expensive foreign device, if those are manufactured adequately.

  • PDF

Evaluation of Metal Artifact Reduction for Orthopedic Implants (O-MAR) on Radiotherapy Treatment Planning (방사선 치료 계획 시 O-MAR (Metal Artifact Reduction for Orthopedic Implants) 적용의 유용성 평가)

  • Won, Huisu;Hong, Joowan;Kim, Sunyoung;Choi, Jaehyock;Cho, Jaehwan;Yang, Hanjoon;Lee, Jin;Lee, Sunyeob;Park, Cheolsoo
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.5
    • /
    • pp.217-223
    • /
    • 2014
  • The aim of this study is evaluation of dose distribution on radiation therapy planning system with the CT image of high-density material inserted phantom. Gammex 467 Tissue Characterization Phantom is used to acquire an image similar to the human tissues and insert a Titanium to generate metal artifact. The acquired images were reconstructed with Metal Artifact Reduction for Orthopedic Implants (O-MAR). By using the treatment planning system, the volume was analyzed and dose distribution was extracted. Photon dose distribution in linear accelerator was measured by the $MapCHECK^{TM}$ and compared with planned and measured dose distributions. In result of the comparative analysis, when artifact is generated by Titanium, The volume applied O-MAR was increased 6.8% to BR-12 Breast and 40.2% to LV 1 Liver. After O-MAR was used, Dose distribution was higher 1.4 to 1.6% than before. Consequently, The artifact caused by metal objects should be removed if possible, and after that used in the radiotherapy treatment plan can be considered to reduce errors.

The Estimated Evacuation Time for the Emergency Planning Zone of the Kori Nuclear Site, with a Focus on the Precautionary Action Zone

  • Lee, Janghee;Jeong, Jae Jun;Shin, Wonki;Song, Eunyoung;Cho, Cheolwoo
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.3
    • /
    • pp.196-205
    • /
    • 2016
  • Background: The emergency planning zone (EPZ) of the city of Busan is divided into the precautionary actions zone (PAZ) and the urgent protective action planning zone; which have a 5-km radius and a 20-km to 21-km radius from the nuclear power plant site, respectively. In this study, we assumed that a severe accident occurred at Shin-Kori nuclear unit 3 and evaluated the dispersion speed of radiological material at each distance at various wind speeds, and estimated the effective dose equivalent and the evacuation time of PAZ residents with the goal of supporting off-site emergency action planning for the nuclear site. Materials and Methods: The total effective dose equivalent, which shows the effect of released radioactive materials on the residents, was evaluated using the RASCAL 4.2 program. In addition, a survey of 1,036 residents was performed using a standardized questionnaire, and the resident evacuation time according to road and distance was analyzed using the VISSIM 6.0 program. Results and Discussion: According to the results obtained using the VISSIM and RASCAL programs, it would take approximately 80 to 252.2 minutes for permanent residents to move out of the PAZ boundary, 40 to 197.2 minutes for students, 60 to 232.2 minutes for the infirm, such as elderly people and those in a nursing home or hospital, and 30 to 182.2 minutes for those temporarily within the area. Consequently, in the event of any delay in the evacuation, it is estimated that the residents would be exposed to up to $10mSv{\cdot}h^{-1}$ of radiation at the Exclusion Area Boundaries (EAB) boundary and $4-6mSv{\cdot}h^{-1}$ at the PAZ boundary. Conclusion: It was shown that the evacuation time for the residents is adequate in light of the time lapse from the initial moment of a severe accident to the radiation release. However, in order to minimize the evacuation time, it is necessary to maintain a system of close collaboration to avoid traffic congestion and spontaneous evacuation attempts.

A Study on Dosimetry for Small Fields of Photon Beam (광자선 소조사면의 선량 측정에 관한 연구)

  • 강위생;하성환;박찬일
    • Progress in Medical Physics
    • /
    • v.5 no.2
    • /
    • pp.57-68
    • /
    • 1994
  • Purpose : The purposes are to discuss the reason to measure dose distributions of circular small fields for stereotactic radiosurgery based on medical linear accelerator, finding of beam axis, and considering points on dosimetry using home-made small water phantom, and to report dosimetric results of 10MV X-ray of Clinac-18, like as TMR, OAR and field size factor required for treatment planning. Method and material : Dose-response linearity and dose-rate dependence of a p-type silicon (Si) diode, of which size and sensitivity are proper for small field dosimetry, are determined by means of measurement. Two water tanks being same in shape and size, with internal dimension, 30${\times}$30${\times}$30cm$^3$ were home-made with acrylic plates and connected by a hose. One of them a used as a water phantom and the other as a device to control depth of the Si detector in the phantom. Two orthogonal dose profiles at a specified depth were used to determine beam axis. TMR's of 4 circular cones, 10, 20, 30 and 40mm at 100cm SAD were measured, and OAR's of them were measured at 4 depths, d$\sub$max/, 6, 10, 15cm at 100cm SCD. Field size factor (FSF) defined by the ratio of D$\sub$max/ of a given cone at SAD to MU were also measured. Result : The dose-response linearity of the Si detector was almost perfect. Its sensitivity decreased with increasing dose rate but stable for high dose rate like as 100MU/min and higher even though dose out of field could be a little bit overestimated because of low dose rate. Method determining beam axis by two orthogonal profiles was simple and gave 0.05mm accuracy. Adjustment of depth of the detector in a water phantom by insertion and remove of some acryl pates under an auxiliary water tank was also simple and accurate. TMR, OAR and FSF measured by Si detector were sufficiently accurate for application to treatment planning of linac-based stereotactic radiosurgery. OAR in field was nearly independent of depth. Conclusion : The Si detector was appropriate for dosimetry of small circular fields for linac-based stereotactic radiosurgery. The beam axis could be determined by two orthogonal dose profiles. The adjustment of depth of the detector in water was possible by addition or removal of some acryl plates under the auxiliary water tank and simple. TMR, OAR and FSF were accurate enough to apply to stereotactic radiosurgery planning. OAR data at one depth are sufficient for radiosurgery planning.

  • PDF

Path planning in nuclear facility decommissioning: Research status, challenges, and opportunities

  • Adibeli, Justina Onyinyechukwu;Liu, Yong-kuo;Ayodeji, Abiodun;Awodi, Ngbede Junior
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3505-3516
    • /
    • 2021
  • During nuclear facility decommissioning, workers are continuously exposed to high-level radiation. Hence, adequate path planning is critical to protect workers from unnecessary radiation exposure. This work discusses recent development in radioactive path planning and the algorithms recommended for the task. Specifically, we review the conventional methods for nuclear decommissioning path planning, analyze the techniques utilized in developing algorithms, and enumerate the decision factors that should be considered to optimize path planning algorithms. As a major contribution, we present the quantitative performance comparison of different algorithms utilized in solving path planning problems in nuclear decommissioning and highlight their merits and drawbacks. Also, we discuss techniques and critical consideration necessary for efficient application of robots and robotic path planning algorithms in nuclear facility decommissioning. Moreover, we analyze the influence of obstacles and the environmental/radioactive source dynamics on algorithms' efficiency. Finally, we recommend future research focus and highlight critical improvements required for the existing approaches towards a safer and cost-effective nuclear-decommissioning project.

Treatment Planning Guideline of EBT Film-based Delivery Quality Assurance Using Statistical Process Control in Helical Tomotherapy (토모테라피에서 통계적공정관리를 이용한 EBT 필름 기반의 선량품질보증의 치료계획 가이드라인)

  • Chang, Kyung Hwan
    • Journal of radiological science and technology
    • /
    • v.45 no.5
    • /
    • pp.439-448
    • /
    • 2022
  • The purpose of this study was to analyze the results from statistical process control (SPC) to recommend upper and lower control limits for planning parameters based on delivery quality assurance (DQA) results and establish our institutional guidelines regarding planning parameters for helical tomotherapy (HT). A total of 53 brain, 41 head and neck (H & N), and 51 pelvis cases who had passing or failing DQA measurements were selected. The absolute point dose difference (DD) and the global gamma passing rate (GPR) for all patients were analyzed. Control charts were used to evaluate upper and lower control limits (UCL and LCL) for all assessed treatment planning parameters. Treatment planning parameters were analyzed to provide its range for DQA pass cases. We confirmed that the probability of DQA failure was higher when the proportion of leaf open time (LOT) below 100 ms was greater than 30%. LOT and gantry period (GP) were significant predictor for DQA failure using the SPC method. We investigated the availability of the SPC statistic method to establish the local planning guideline based on DQA results for HT system. The guideline of each planning parameter in HT may assist in the prediction of DQA failure using the SPC statistic method in the future.

A Study on the Construction of MVCT Dose Calculation Model by Using Dosimetry Check™ (Dosimetry Check™를 이용한 MVCT 선량계산 모델 구축에 관한 연구)

  • Um, Ki-Cheon;Kim, Chang-Hwan;Jeon, Soo-Dong;Back, Geum-Mun
    • Journal of radiological science and technology
    • /
    • v.43 no.6
    • /
    • pp.431-441
    • /
    • 2020
  • The purpose of this study was to construct a model of MVCT(Megavoltage Computed Tomography) dose calculation by using Dosimetry Check™, a program that radiation treatment dose verification, and establish a protocol that can be accumulated to the radiation treatment dose distribution. We acquired sinogram of MVCT after air scan in Fine, Normal, Coarse mode. Dosimetry Check™(DC) program can analyze only DICOM(Digital Imaging Communications in Medicine) format, however acquired sinogram is dat format. Thus, we made MVCT RC-DICOM format by using acquired sinogram. In addition, we made MVCT RP-DICOM by using principle of generating MLC(Multi-leaf Collimator) control points at half location of pitch in treatment RP-DICOM. The MVCT imaging dose in fine mode was measured by using ionization chamber, and normalized to the MVCT dose calculation model, the MVCT imaging dose of Normal, Coarse mode was calculated by using DC program. As a results, 2.08 cGy was measured by using ionization chamber in Fine mode and normalized based on the measured dose in DC program. After normalization, the result of MVCT dose calculation in Normal, Coarse mode, each mode was calculated 0.957, 0.621 cGy. Finally, the dose resulting from the process for acquisition of MVCT can be accumulated to the treatment dose distribution for dose evaluation. It is believed that this could be contribute clinically to a more realistic dose evaluation. From now on, it is considered that it will be able to provide more accurate and realistic dose information in radiation therapy planning evaluation by using Tomotherapy.

A Comparison Study with the Vatiation of Isocenter and Collimator in Stereotactic Radiosurgery (방사선 수술시 Isocenter, 콜리메이터 변수에 따른 선량 분포 비교연구)

  • 오승종;박정훈;곽철은;이형구;최보영;이태규;김문찬;서태석
    • Progress in Medical Physics
    • /
    • v.13 no.3
    • /
    • pp.129-134
    • /
    • 2002
  • The radiosurgery is planned that prescribed dose was irradiated to tumor for obtaining expected remedial value in stereotactic radiosurgery. The planning for many irregular tumor shape requires long computation time and skilled planners. Due to the rapid development in computer power recently, many optimization methods using computer has been proposed, although the practical method is still trial and error type of plan. In this study, many beam variables were considered and many tumor shapes were assumed cylinderical ideal models. Then, beam variables that covered the target within 50% isodose curve were searched, the result was compared and analysed. The beam variables considered were isocenter separation distance, number of isocenters and collimator size. Dose distributions obtained with these variables were analysed by dose volume histogram(DVH) and dose profile at orthogonal plane. According to the results compared, the use of more isocenters than specified isocenter dosen't improve DVH and dose profile but only increases complexity of plan. The best result of DVH and dose profile are obtainedwhen isocenter separation was 1.0-1.2 in using same number of isocenter.

  • PDF

Evaluation of the effective dose and image quality of low-dose multi-detector CT for orthodontic treatment planning (3차원 안모분석을 위한 저선량 Multi-detector CT 영상의 유효선량 및 화질 평가)

  • Chung, Gi-Chung;Han, Won-Jeong;Kim, Eun-Kyung
    • Imaging Science in Dentistry
    • /
    • v.40 no.1
    • /
    • pp.15-23
    • /
    • 2010
  • Purpose : This study was designed to compare the effective doses from low-dose and standard-dose multi-detector CT (MDCT) scanning protocols and evaluate the image quality and the spatial resolution of the low-dose MDCT protocols for clinical use. Materials and Methods : 6-channel MDCT scanner (Siemens Medical System, Forschheim, Germany), was used for this study. Protocol of the standard-dose MDCT for the orthodontic analysis was 130 kV, 35 mAs, 1.25 mm slice width, 0.8 pitch. Those of the low-dose MDCT for orthodontic analysis and orthodontic surgery were 110 kV, 30 mAs, 1.25 mm slice width, 0.85 pitch and 110 kV, 45 mAs, 2.5 mm slice width, 0.85 pitch. Thermoluminescent dosimeters (TLDs) were placed at 31 sites throughout the levels of adult female ART head and neck phantom. Effective doses were calculated according to ICRP 1990 and 2007 recommendations. A formalin-fixed cadaver and AAPM CT performance phantom were scanned for the evaluation of subjective image quality and spatial resolution. Results : Effective doses in ${\mu}Sv$ ($E_{2007}$) were 699.1, 429.4 and 603.1 for standard-dose CT of orthodontic treatment, low-dose CT of orthodontic analysis, and low-dose CT of orthodontic surgery, respectively. The image quality from the low-dose protocol were not worse than those from the standard-dose protocol. The spatial resolutions of both standard-dose and low-dose CT images were acceptable. Conclusion : From the above results, it can be concluded that the low-dose MDCT protocol is preferable in obtaining CT images for orthodontic analysis and orthodontic surgery.