The purpose of this study was to construct a model of MVCT(Megavoltage Computed Tomography) dose calculation by using Dosimetry Check™, a program that radiation treatment dose verification, and establish a protocol that can be accumulated to the radiation treatment dose distribution. We acquired sinogram of MVCT after air scan in Fine, Normal, Coarse mode. Dosimetry Check™(DC) program can analyze only DICOM(Digital Imaging Communications in Medicine) format, however acquired sinogram is dat format. Thus, we made MVCT RC-DICOM format by using acquired sinogram. In addition, we made MVCT RP-DICOM by using principle of generating MLC(Multi-leaf Collimator) control points at half location of pitch in treatment RP-DICOM. The MVCT imaging dose in fine mode was measured by using ionization chamber, and normalized to the MVCT dose calculation model, the MVCT imaging dose of Normal, Coarse mode was calculated by using DC program. As a results, 2.08 cGy was measured by using ionization chamber in Fine mode and normalized based on the measured dose in DC program. After normalization, the result of MVCT dose calculation in Normal, Coarse mode, each mode was calculated 0.957, 0.621 cGy. Finally, the dose resulting from the process for acquisition of MVCT can be accumulated to the treatment dose distribution for dose evaluation. It is believed that this could be contribute clinically to a more realistic dose evaluation. From now on, it is considered that it will be able to provide more accurate and realistic dose information in radiation therapy planning evaluation by using Tomotherapy.
Seokju Hwang;Si-Young Kim;Deuk-Man Kim;Young Hwan Hwang;Jungkwon Son
Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
/
v.22
no.1
/
pp.45-54
/
2024
Currently, off-site dose calculations for nuclear power plants are conducted using a computer program (K-DOSE 60). The program is developed based on the regulatory guidelines of the Korea Institute of Nuclear Safety (KINS), which is a domestic nuclear regulatory agency. In this study, a domestic application of the International Atomic Energy Agency (IAEA) TRS (Technical Reports Series)-472 methodology for 3H and 14C in liquid effluents was studied. The dose-evaluation methods adopted and the program configuration for dose evaluation are described based on 3H and 14C in the liquid-effluent-evaluation module of the computer program. The accuracy of the program is verified by comparing the program-calculated results with hand calculation values. Furthermore, a comparative evaluation with LADTAP II, which is a liquid-effluent-evaluation methodology developed by the U.S. NRC (Nuclear Regulatory Commission), is performed. The result confirms that the program-calculated results for the IAEA TRS-472 methodology are consistent with the hand calculation values. Meanwhile, the result of comparative evaluation with LADTAP II indicates different results depending on the methodology used.
In brachytherapy, it is important to determine the positions of the radiation sources which are inserted into a patient and to estimate the dose resulting from the treatment. Calculation of the dose distribution throughout an implant is so laborious that it is rarely done by manual methods except for model cases. It is possible to calculate isodose distributions and tumor doses for individual patients by the use of a microcomputer. In this program, the dose rate and dose distributions are calculated by numerical integration of point source and the localization of radiation sources are obtained from two radiographs at right angles taken by a simulator developed for the treatment planning. By using microcomputer for brachytherapy, we obtained the result as following 1. Dose calculation and irradiation time for tumor could be calculated under one or five seconds after input data. 2. It was same value under$\pm2\%$ error between dose calculation by computer program and measurement dose. 3. It took about five minutes to reconstruct completely dose distribution for intracavitary irradiation. 4. Calculating by computer made remarkly reduction of dose errors compared with Quimby's calculation in interstitial radiation implantation. 5. It could calculate the biological isoffect dose for high and low dose rate activities.
Journal of the Korea Academia-Industrial cooperation Society
/
v.18
no.3
/
pp.657-665
/
2017
The aim of this study was to develop and distribute a dedicated program that can easily calculate the effective dose of a patient undergoing nuclear medicine examinations, and assist in the study of dose of nuclear medicine examinations and information disclosure. The program produced a database of the effective dose per unit activity administered (mSv/MBq) of the radiopharmaceuticals listed in ICRP 80, 106 Report and the fourth addendum, was designed through Microsoft Visual Basic (In Excel) to take the effect of 5 different (Area, Clark, Solomon(=Fried), Webster, Young) of pediatric dose calculation methods and 7 different body surface area calculation methods. The program calculates the effective dose (mSv) when the age, radionuclide, substance, and amount injected in the human body is inputted. In pediatric cases, when the age is entered, the pediatric method is activated and the pediatric method to be applied can be selected. When the BSA (Body Surface Area) formula is selected in the pediatric calculation method, a selection window for selecting the body surface area calculation method is activated. When the adult dose is input, the infant dose and the effective dose (mSv) are calculated automatically. The patient effective dose calculation program of the nuclear medicine examinations produced in this study is meaningful as a tool for calculating the internal exposure dose of the human body that is most likely to be obtained in nuclear medicine examinations, even though it is not the actual measurement dose. In the future, to increase the utilization of the program, it will be produced as an application that can be used in mobile devices, so that the public can access it easily.
Recently, They are usually recording the patient information on the Hospital Information System. In the department of Radiology, For the purpose of assuming patient exposed dose, Authors contrived the mathematical calculation model by use of x-ray out put data on the Excel program, if they in put the exposure factors (kVp, mAs, thickness), the program could automatically calculate the patient Skin dose. The assuming data by three dimensional equation has average errors within ${\pm}5%$, there for We could make good use of clinical field in department of radiology.
Chung Weon Kuu;Kim Soo Kon;Kang Jeong Ku;Lee Jeong Ok;Moon Sun Rock;Kim Seung Kon
Radiation Oncology Journal
/
v.14
no.3
/
pp.247-253
/
1996
Purpose : The dose calculation program for the Buckler type remote after-loading system was developed. This program also can be used to calculate dose for various sealed sources. Materials and Methods : We determined the source length and distribution by dividing the program disk to 72 points. The dose rate for the each program disk and source was calculated. The dose rate table for the xy coordinate was established. The dose rate for the interesting points of the patient were calculated by using this table, We also made isodose curve from this calculations. Results : The storage size for the dose rate table were increased. But the calculation of the dose rate for the patient were carried out rapidly. So we could get real time calculation. Conclusion : By using this program, we could calculate the dose rate for the various points of the patient quickly and accurately. This program will be useful for the treatment with various linear sources.
Proceedings of the Korean Society of Medical Physics Conference
/
2005.04a
/
pp.42-46
/
2005
The Dose calculation program for the Buchler remote after-loading system was developed. We use iridium source for the tandem and cessium for the ovoids. We determined the source length and distributions by dividing the program disk to 72 points. The dose rate for the each program disk were calculated and stored to the tables for the xy coordinates. The dose rate for the interesting points for the patients were calculated by using these tables. We also made isodose curve from the calculations. By using the program, we could calculate the dose rate for the various points of the patient quickly and accurately.
Dong‑Jin, Kang;Young‑Joo, Shin;Jin-Kyu, Kang;Jae‑Yong, Jung;Woo-jin, Lee;Tae-Seong, Baek;Boram, Lee
Journal of radiological science and technology
/
v.45
no.6
/
pp.553-560
/
2022
The purpose of this study is to evaluate the clinical risk according to the applicator heterogeneity, mislocation, and tissue heterogeneity correction through a dose verification program during brachytherapy of cervical cancer. We performed image processing with MATLAB on images acquired with CT simulator. The source was modeled and stochiometric calibration and Monte-Carlo algorithm were applied based on dwell time and location to calculate the dose, and the secondary cancer risk was evaluated in the dose verification program. The result calculated by correcting for applicator and tissue heterogeneity showed a maximum dose of about 25% higher. In the bladder, the difference in excess absolute risk according to the heterogeneity correction was not significant. In the rectum, the difference in excess absolute risk was lower than that calculated by correcting applicator and tissue heterogeneity compared to the water-based calculation. In the femur, the water-based calculation result was the lowest, and the result calculated by correcting the applicator and tissue heterogeneity was 10% higher. A maximum of 14% dose difference occurred when the applicator mislocation was 20 mm in the Z-axis. In a future study, it is expected that a system that can independently verify the treatment plan can be developed by automating the interface between the treatment planning system and the dose verification program.
In this paper, as a preliminary study for developing a full 3D electron dose calculation algorithm, We developed 2.5D electron dose calculation algorithm by extending 2D pencil-beam model to consider three dimensional geometry such as air-gap and obliquity appropriately. The dose calculation algorithm was implemented using the IDL5.2(Research Systems Inc., USA), For calculation of the Hogstrom's pencil-beam algorithm, the measured data of the central-axis depth-dose for 12 MeV(Siemens M6740) and the linear stopping power and the linear scattering power of water and air from ICRU report 35 was used. To evaluate the accuracy of the implemented program, we compared the calculated dose distribution with the film measurements in the three situations; the normal incident beam, the 45$^{\circ}$ oblique incident beam, and the beam incident on the pit-shaped phantom. As results, about 120 seconds had been required on the PC (Pentium III 450MHz) to calculate dose distribution of a single beam. It needs some optimizing methods to speed up the dose calculation. For the accuracy of dose calculation, in the case of the normal incident beam of the regular and irregular shaped field, at the rapid dose gradient region of penumbra, the errors were within $\pm$3 mm and the dose profiles were agreed within 5%. However, the discrepancy between the calculation and the measurement were about 10% for the oblique incident beam and the beam incident on the pit-shaped phantom. In conclusions, we expended 2D pencil-beam algorithm to take into account the three dimensional geometry of the patient. And also, as well as the dose calculation of irregular field, the irregular shaped body contour and the air-gap could be considered appropriately in the implemented program. In the near future, the more accurate algorithm will be implemented considering inhomogeneity correction using CT, and at that time, the program can be used as a tool for educational and research purpose. This study was supported by a grant (#HMP-98-G-1-016) of the HAN(Highly Advanced National) Project, Ministry of Health & Welfare, R.O.K.
This study analyzed imaging conditions and exposure index through clinical information collection and dose calculation programs in coronary angiography examinations. Through this, we aim to analyze the effective dose according to examination conditions and provide basic data for dose optimization. In this study, ALARA(As Low As Reasonably Achievable)-F(Fluoroscopy), a program for evaluating the radiation dose of patients and the collected clinical data, was used. First, analysis of imaging conditions and exposure index was performed based on the data of the dose report generated after coronary angiography. Second, after evaluating organ dose according to 9 imaging directions during coronary angiography, with the LAO fixed at 30°, dose evaluation was performed according to tube voltage, tube current, number of frames, focus-skin distance, and field size. Third, the effective dose for each organ was calculated according to the tissue weighting factors presented in ICRP(International Commission on Radiological Protection) recommendations. As a result, the average sum of air kerma during coronary angiography was evaluated as 234.0±112.1 mGy, the dose-area product was 25.9±13.0 Gy·cm2, and the total fluoroscopy time was 2.5±2.0 min. Also, the organ dose tended to increase as the tube voltage, milliampere-second, number of frames, and irradiation range increased, whereas the organ dose decreased as the FSD increased. Therefore, medical radiation exposure to patients can be reduced by selecting the optimal tube voltage and field size during coronary angiography, maximizing the focal-skin distance, using the lowest tube current possible, and reducing the number of frames.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.