• Title/Summary/Keyword: Dose Verification

Search Result 225, Processing Time 0.021 seconds

Analysis of the Imaging Dose for IGRT/Gated Treatments (영상유도 및 호흡동조 방사선치료에서의 영상장비에 의한 흡수선량 분석)

  • Shin, Jung-Suk;Han, Young-Yih;Ju, Sang-Gyu;Shin, Eun-Hyuk;Hong, Chae-Seon;Ahn, Yong-Chan
    • Radiation Oncology Journal
    • /
    • v.27 no.1
    • /
    • pp.42-48
    • /
    • 2009
  • Purpose: The introduction of image guided radiation therapy/four-dimensional radiation therapy (IGRT/4DRT) potentially increases the accumulated dose to patients from imaging and verification processes as compared to conventional practice. It is therefore essential to investigate the level of the imaging dose to patients when IGRT/4DRT devices are installed. The imaging dose level was monitored and was compared with the use of pre-IGRT practice. Materials and Methods: A four-dimensional CT (4DCT) unit (GE, Ultra Light Speed 16), a simulator (Varian Acuity) and Varian IX unit with an on-board imager (OBI) and cone beam CT (CBCT) were installed. The surface doses to a RANDO phantom (The Phantom Laboratory, Salem, NY USA) were measured with the newly installed devices and with pre-existing devices including a single slice CT scanner (GE, Light Speed), a simulator (Varian Ximatron) and L-gram linear accelerator (Varian, 2100C Linac). The surface doses were measured using thermo luminescent dosimeters (TLDs) at eight sites-the brain, eye, thyroid, chest, abdomen, ovary, prostate and pelvis. Results: Compared to imaging with the use of single slice non-gated CT, the use of 4DCT imaging increased the dose to the chest and abdomen approximately ten-fold ($1.74{\pm}0.34$ cGy versus $23.23{\pm}3.67$cGy). Imaging doses with the use of the Acuity simulator were smaller than doses with the use of the Ximatron simulator, which were $0.91{\pm}0.89$ cGy versus $6.77{\pm}3.56$ cGy, respectively. The dose with the use of the electronic portal imaging device (EPID; Varian IX unit) was approximately 50% of the dose with the use of the L-gram linear accelerator ($1.83{\pm}0.36$ cGy versus $3.80{\pm}1.67$ cGy). The dose from the OBI for fluoroscopy and low-dose mode CBCT were $0.97{\pm}0.34$ cGy and $2.3{\pm}0.67$ cGy, respectively. Conclusion: The use of 4DCT is the major source of an increase of the radiation (imaging) dose to patients. OBI and CBCT doses were small, but the accumulated dose associated with everyday verification need to be considered.

Review on the Pre-treatment Quality Assurance for Intensity Modulated Radiation Therapy (세기변조 방사선치료의 환자 치료 전 선량보증에 대한 고찰)

  • Han, Youngyih
    • Progress in Medical Physics
    • /
    • v.24 no.4
    • /
    • pp.213-219
    • /
    • 2013
  • This review paper deals with the current statues of pre-treatment quality assurance conducted for Intensity modulated radiation therapy. Focusing on the issues relevant to two-dimensional verification of absorbed dose distribution, review was made for the papers published during the last 3~4 years. Lastly, the future development direction was projected.

Implementation of Fire Risk Estimation System for various Fire Situations using Multiple Sensors (다중 센서들을 이용한 다양한 화재 상황의 위험도 추정 시스템 개발)

  • Lee, Kwangjae;Lee, Youn-Sung
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.394-398
    • /
    • 2016
  • In this paper, a fire detection system based on quantitative risk estimation is presented. Multiple sensors are used to build a comprehensive indicator that represents the risk of fire quantitatively. The proposed fire risk estimation method consists of two stages which determines the occurrence of fire and estimates the toxicity of the surveillance area. In the first stage, fire is reliably detected under diverse fire scenarios. The risk of fire is estimated in the second stage. Applying Purser's Fractional Effective Dose (FED) model which quantitates harmfulness of toxic gases, the risk of the surveillance area and evacuation time are calculated. A fire experiment conducted using four different types of combustion materials for the verification of the system resulted in a maximum error rate of 12.5%. By using FED calculation and risk estimation methods, the proposed system can detect various signs of fire faster than conventional systems.

Practical Surface Sculpting Method for the Fabrication of Predefined Curved Structures using Focused Ion Beam

  • Kim, Heung-Bae
    • Applied Science and Convergence Technology
    • /
    • v.25 no.5
    • /
    • pp.92-97
    • /
    • 2016
  • Surface erosion using focused ion beam irradiation is the most promising technology for the realization of micro/nanofabrication. However, accurate fabrication of predefined structures is still challenging. This article introduces a single step surface driving method to fabricated predefined curved structures. The previously reported multi step surface driving method (MSDM) has been modified so that a single ion dose profile can be used instead of multiple ion dose profiles. Experimental realization of the method is presented with the fabrication of predefined curved surfaces as well as reference to surface propagation theory. For the purpose of verification, simulations are performed on the basis of a sound mathematical model.

Chest-wall Surface Dose During Post-mastectomy Radiation Therapy, with and without Nonmagnetic Bolus: A Phantom Study

  • Choi, Cheon Woong;Hong, Joo Wan;Park, Cheol Soo;Ahn, Jae Ouk
    • Journal of Magnetics
    • /
    • v.21 no.2
    • /
    • pp.293-297
    • /
    • 2016
  • For mastectomy patients, sufficient doses of radiation should be delivered to the surface of the chest wall to prevent recurrence. A bolus is used to increase the surface dose on the chest wall, whereby the surface dose is confirmed with the use of a virtual bolus during the computerized treatment-planning process. The purpose of this study is an examination of the difference between the dose of the computerized treatment plan and the dose that is measured on the bolus. Part of the left breast of an Anderson Rando phantom was removed, followed by the attainment of computed tomography (CT) images that were used as the basis for computerized treatment plans that were established with no bolus, a 3 mm-thick bolus, a 5 mm-thick bolus, and a 10 mm-thick bolus. For the computerized treatment plan, a prescribed dose regimen was dispensed daily and planning target volume (PTV) coverage was applied according to the RTOG 1304 guidelines. Using each of the established computerized treatment plans, chest-wall doses of 5 points were measured; this chest-wall dose was used as the standard for the analysis of this study, while the level of significance was set at P < 0.05. The measurement of the chest-wall dose with no bolus is 1.6 % to 10.3 % higher, and the differences of the minimum average and the maximum average of the five measurement points are -13.8 and -1.9, respectively (P < 0.05); however, when the bolus was used, the dosage was measured as 3.7 % to 9.2 % lower, and the differences of the minimum average and the maximum average are 7.4 and 9.0, -1.2 and 17.4, and 8.1 and 19.8 for 3 mm, 5 mm, and 10 mm, respectively (P < 0.05). As the thickness of the bolus is increased, the differences of the average surface dose are further increased. There are a variety of factors that affect the surface dose on the chest wall during post-mastectomy radiation therapy, for which verification is required; in particular, a consideration of the appropriate thickness and the number of uses when a bolus is used, and which has the greatest effect on the surface dose on the chest wall, is considered necessary.

Developments of Space Radiation Dosimeter using Commercial Si Radiation Sensor (범용 실리콘 방사선 센서를 이용한 우주방사선 선량계 개발)

  • Jong-kyu Cheon;Sunghwan Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.3
    • /
    • pp.367-373
    • /
    • 2023
  • Aircrews and passengers are exposed to radiation from cosmic rays and secondary scattered rays generated by reactions with air or aircraft. For aircrews, radiation safety management is based on the exposure dose calculated using a space-weather environment simulation. However, the exposure dose varies depending on solar activity, altitude, flight path, etc., so measuring by route is more suggestive than the calculation. In this study, we developed an instrument to measure the cosmic radiation dose using a general-purpose Si sensor and a multichannel analyzer. The dose calculation applied the algorithm of CRaTER (Cosmic Ray Telescope for the Effects of Radiation), a space radiation measuring device of NASA. Energy and dose calibration was performed with Cs-137 662 keV gamma rays at a standard calibration facility, and good dose rate dependence was confirmed in the experimental range. Using the instrument, the dose was directly measured on the international line between Dubai and Incheon in May 2023, and it was similar to the result calculated by KREAM (Korean Radiation Exposure Assessment Model for Aviation Route Dose) within 12%. It was confirmed that the dose increased as the altitude and latitude increased, consistent with the calculation results by KREAM. Some limitations require more verification experiments. However, we confirmed it has sufficient utilization potential as a cost-effective measuring instrument for monitoring exposure dose inside or on personal aircraft.

Implementation of a Radiation-hardened I-gate n-MOSFET and Analysis of its TID(Total Ionizing Dose) Effects

  • Lee, Min-Woong;Lee, Nam-Ho;Jeong, Sang-Hun;Kim, Sung-Mi;Cho, Seong-Ik
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1619-1626
    • /
    • 2017
  • Electronic components that are used in high-level radiation environment require a semiconductor device having a radiation-hardened characteristic. In this paper, we proposed a radiation-hardened I-gate n-MOSFET (n-type Metal Oxide Semiconductors Field Effect Transistors) using a layout modification technique only. The proposed I-gate n-MOSFET structure is modified as an I-shaped gate poly in order to mitigate a radiation-induced leakage current in the standard n-MOSFET structure. For verification of its radiation-hardened characteristic, the M&S (Modeling and Simulation) of the 3D (3-Dimension) structure is performed by TCAD (Technology Computer Aided Design) tool. In addition, we carried out an evaluation test using a $Co^{60}$ gamma-ray source of 10kGy(Si)/h. As a result, we have confirmed the radiation-hardened level up to a total ionizing dose of 20kGy(Si).

Spinal Cord Partial Block Technique Using Dynamic MLC

  • Cho, Sam-Ju;Yi, Byong-Yong;Back, Geum-Mun;Lee, Sang wook;Ahn, Seung-Do;Kim, Jong-Hoon;Kwon, Soo-Il;Park, Eun-Kyung
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.138-140
    • /
    • 2002
  • The spinal cord dose is the one of the limiting factor for the radiation treatment of the head & neck (H&N) or the thorax region. Due to the fact that the cord is the elongated shaped structure, it is not an easy task to maintain the cord dose within the clinically acceptable dose range. To overcome this problem, the spinal cord partial block technique (PBT) with the dynamic Multi-Leaf Collimator (dMLC) has been developed. Three dimension (3D) conformal beam directions, which minimize the coverage of the normal organs such as the lung and the parotid gland, were chosen. The PBT field shape for each field was designed to shield the spinal cord with the dMLC. The transmission factors were determined by the forward calculation method. The plan comparisons between the conventional 3D conformal therapy plan and the PTB plan were performed to evaluate the validity of this technique. The conformity index (CI) and the dose volume histogram (DVH) were used as the plan comparison indices. A series of quality assurance (QA) was performed to guarantee the reliable treatment. The QA consisted of the film dosimetry for the verification of the dose distribution and the point measurements. The PBT plan always generated better results than the conventional 3D conformal plan. The PBT was proved to be useful for the H&N and thorax region.

  • PDF