• Title/Summary/Keyword: Dose Verification

Search Result 227, Processing Time 0.036 seconds

50-300 keV X-ray Transmission Ratios for Lead, Steel and Concrete

  • Tae Hwan Kim;Kum Bae Kim;Geun Beom Kim;Dong Wook Kim;Sang Rok Kim;Sang Hyoun Choi
    • Progress in Medical Physics
    • /
    • v.33 no.4
    • /
    • pp.164-171
    • /
    • 2022
  • The number of facilities using radiation generators increases and related regulations are strengthened, the establishment of a shielding management and evaluation technology has become important. The characteristics of the radiation generator used in previous report differ from those of currently available high-frequency radiation generators. This study aimed to manufacture lead, iron, and concrete shielding materials for the re-verification of half-value layers, tenth-value layers, and attenuation curve. For a comparison of attenuation ratio, iron, lead, and concrete shields were manufactured in this study. The initial dose was measured without shielding materials, and doses measured under different types and thicknesses of shielding material were compared with the initial dose to calculate the transmission rate on 50-300 kVp X-ray. All the three shielding materials showed a tendency to require greater shielding thickness for higher energy. The attenuation graph showed an exponential shape as the thickness decreased and a straight line as the thickness increased. The difference between the measurement results and the previous study, except in extrapolated parts, may be due to the differences in the radiation generation characteristics between the generators used in the two studies. The attenuated graph measured in this study better reflects the characteristics of current radiation generators, which would be more effective for shield designing.

Reading Deviations of Glass Rod Dosimeters Using Different Pre-processing Methods for Radiotherapeutic in-vivo Dosimetry (유리선량계의 전처리 방법이 방사선 치료 선량 측정에 미치는 영향)

  • Jeon, Hosang;Nam, Jiho;Park, Dahl;Kim, Yong Ho;Kim, Wontaek;Kim, Dongwon;Ki, Yongkan;Kim, Donghyun;Lee, Ju Hye
    • Progress in Medical Physics
    • /
    • v.24 no.2
    • /
    • pp.92-98
    • /
    • 2013
  • The experimental verification of treatment planning on the treatment spot is the ultimate method to assure quality of radiotherapy, so in-vivo skin dose measurement is the essential procedure to confirm treatment dose. In this study, glass rod dosimeter (GRD), which is a kind of photo-luminescent based dosimeters, was studied to produce a guideline to use GRDs in vivo dosimetry for quality assurance of radiotherapy. The pre-processing procedure is essential to use GRDs. This is a heating operation for stabilization. Two kinds of pre-processing methods are recommended by manufacturer: a heating method (70 degree, 30 minutes) and a waiting method (room temperature, 24 hours). We equally irradiated 1.0 Gy to 20 GRD elements, and then different preprocessing were performed to 10 GRDs each. In heating method, reading deviation of GRDs at same time were relatively high, but the deviation was very low as time went on. In waiting method, the deviation among GRDs was low, but the deviation was relatively high as time went on. The meaningful difference was found between mean reading values of two pre-processing methods. Both methods present mean dose deviation under 5%, but the relatively high effect by reading time was observed in waiting method. Finally, GRD is best to perform in-vivo dosimetry in the viewpoint of accuracy and efficiency, and the understanding of how pre-processing affect the accuracy is asked to perform most accurate in-vivo dosimetry. The further study is asked to acquire more stable accuracy in spite of different irradiation conditions for GRD usage.

Analysis of the Range Verification of Proton using PET-CT (Off-line PET-CT를 이용한 양성자치료에서의 Range 검증)

  • Jang, Joon Young;Hong, Gun Chul;Park, Sey Joon;Park, Yong Chul;Choi, Byung Ki
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.2
    • /
    • pp.101-108
    • /
    • 2017
  • Purpose: The proton used in proton therapy has a characteristic of giving a small dose to the normal tissue in front of the tumor site while forming a Bragg peak at the cancer tissue site and giving up the maximum dose and disappearing immediately. It is very important to verify the proton arrival position. In this study, we used the off-line PET CT method to measure the distribution of positron emitted from nucleons such as 11C (half-life = 20 min), 150 (half-life = 2 min) and 13N The range and distal falloff point of the proton were verified by measurement. Materials and Methods: In the IEC 2001 Body Phantom, 37 mm, 28 mm, and 22 mm spheres were inserted. The phantom was filled with water to obtain a CT image for each sphere size. To verify the proton range and distal falloff points, As a treatment planning system, SOBP were set at 46 mm on 37 mm sphere, 37 mm on 28 mm, and 33 mm on 22 mm sphere for each sphere size. The proton was scanned in the same center with a single beam of Gantry 0 degree by the scanning method. The phantom was scanned using PET-CT equipment. In the PET-CT image acquisition method, 50 images were acquired per minute, four ROIs including the spheres in the phantom were set, and 10 images were reconstructed. The activity profile according to the depth was compared to the dose profile according to the sphere size established in the treatment plan Results: The PET-CT activity profile decreased rapidly at the distal falloff position in the 37 mm, 28 mm, and 22 mm spheres as well as the dose profile. However, in the SOBP section, which is a range for evaluating the range, the results in the proximal part of the activity profile are different from those of the dose profile, and the distal falloff position is compared with the proton therapy plan and PET-CT As a result, the maximum difference of 1.4 mm at the 50 % point of the Max dose, 1.1 mm at the 45 % point at the 28 mm sphere, and the difference at the 22 mm sphere at the maximum point of 1.2 mm were all less than 1.5 mm in the 37 mm sphere. Conclusion: To maximize the advantages of proton therapy, it is very important to verify the range of the proton beam. In this study, the proton range was confirmed by the SOBP and the distal falloff position of the proton beam using PET-CT. As a result, the difference of the distally falloff position between the activity distribution measured by PET-CT and the proton therapy plan was 1.4 mm, respectively. This may be used as a reference for the dose margin applied in the proton therapy plan.

  • PDF

Verification of skin dose according to the location of tumor in Tomotherapy (토모테라피 시 종양의 위치에 따른 피부선량 검증)

  • Yoon, Bo Reum;Park, Su Yeon;Park, Byoung Suk;Kim, Jong Sik;Song, Ki Won
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.273-280
    • /
    • 2014
  • Purpose : To verify the skin dose in Tomotherapy-based radiation treatment according to the change in tumor locations, skin dose was measured by using Gafchromic EBT3 film and compared with the planned doses to find out the gap between them. Materials and Methods : In this study, to measure the skin dose, I'm RT Phantom(IBA Dosimetry, Germany) was utilized. After obtaining the 2.5mm CT images, tumor locations and skin dose measuring points were set by using Pinnacle(ver 9.2, Philips Medical System, USA). The tumor location was decided to be 5mm and 10mm away from surface of the phantom and center. Considering the attenuation of a Tomo-couch, we ensured a symmetric placement between the ceiling and floor directions of the phantom. The measuring point of skin doses was set to have 3mm and 5mm thickness from the surface. Measurement was done 3 times. By employing TomoHD(TomoHD treatment system, Tomotherapy Inc., Madison, Wisconsin, USA), we devised Tomotherapy plans, measured 3 times by inserting Gafchromic EBT3 film into the phantom and compared the measurement with the skin dose treatment plans. Results : The skin doses in the upper part of the phantom, when the tumor was located in the center, were found to be 7.53 cGy and 7.25 cGy in 5mm and 3mm respectively. If placed 5mm away from the skin in the ceiling direction, doses were 18.06 cGy and 16.89 cGy; if 10mm away, 20.37 cGy and 18.27 cGy, respectively. The skin doses in the lower part of the phantom, when the tumor was located in the center, recorded 8.82 cGy and 8.29 cGy in 5mm and 3mm, each; if located 5mm away from the lower part skin, 21.69 cGy and 19.78 cGy were respectively recorded; and if 10mm away, 20.48 cGy and 19.57 cGy were recorded. If the tumor was placed in the center, skin doses were found to increase by 3.2~17.1% whereas if the tumor is 5mm away from the ceiling part, the figure decreased to 2.8~9.0%. To the Tomo-couch direction, skin doses showed an average increase of 11% or over, compared to the planned treatment. Conclusion : This study found gaps between planned skin doses and actual doses in the Tomotherapy treatment planning. Especially to the Tomo-cocuh direction, skin doses were found to be larger than the planned doses. Thus, during the treatment of tumors near the Tomo-couch, doses will need to be more accurately calculated and more efforts to verify skin doses will be required as well.

Verification of Cytotoxicity Against Cancer Cell Line and Estrogen-like Activity of Cheongkukjang (청국장의 암세포주에 대한 세포독성 및 에스트로겐 유사활성 검증)

  • Lee, Dong-Geun;Lee, Sang-Hyeon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.1
    • /
    • pp.153-157
    • /
    • 2007
  • In order to evaluate the cancer preventive and estrogenic compounds in soybean and Cheongkukjang, MTT assay and in vitro test system for the evaluation of the estrogenic activity were applied. The fractions from the ethanol extract of soybean and Cheongkukjang were prepared by the systematic extraction procedure with the solvents such as hexane, ethyl ether, butanol, methanol and H$_2$O. Ethyl ether fractions of soybean and Cheongkukjang showed the highest cytotoxicity against U937 cell line in dose dependent manner, and ethyl ether fraction of Cheongkukjang showed two times higher cytotoxicity than that of soybean. Aqueous fraction of soybean and ethyl ether fraction of Cheongkukjang revealed the highest estrogenic activity and activity was higher in the fractions of Cheongkukjang than soybean. Mixture of Spirulina and Cheongkukjang showed synergistic activity. These observations concerning cancer preventive and estrogen effects of soybean and Cheongkukjang suggest that these materials possess useful ingredients for the prevention of cancer and/or postmenopausal disorder.

Remote Visualization of Radiation Information based on small Semiconductor Sensor Modules (소형 반도체 센서모듈 기반 방사선정보 원격 가시화기술 연구)

  • Lee, Nam-Ho;Hwang, Young-Gwan;Heu, Yong-Suk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.876-879
    • /
    • 2012
  • In this paper we studied the radiation detection technology which described the radiation level distribution in high radiation area with remotely and safely. The designed radiation mapping system was composed of radiation nodes and radiation station. The radiation nodes could sense the radiation dose values with pMOSFET radiation sensors and transmit them to the radiation station. At the radiation station the received radiation values were merged with a geometric information and visualized at the virtual graphic location. For the functional verification of the above system, we attached the radiation nodes to each corner in our laboratory, executed the mapping tests, and confirmed the designed functions finally.

  • PDF

Verification of Secondary Electron Generated by Head Screw in Gamma Knife Using Monte Carlo N-Particle Simulation

  • Kim, Heesoo;Lee, Jeong-Woo
    • Progress in Medical Physics
    • /
    • v.31 no.2
    • /
    • pp.29-34
    • /
    • 2020
  • Purpose: The interaction of various substances inserted into the human body and radiation can confirm the radiation enhancement effect. A Leksell frame inserted into the human body for gamma knife treatment will cause not only pain and inconvenience to the patient, but also additional exposure to the patient's normal tissues. In this study, we attempt to confirm the additional exposure caused by the interaction of the Leksell frame and thermoplastic mask, and 60Co used for gamma knife treatment. Methods: A 60Co energy of 1.17, 1.33 MeV is applied using Monte Carlo simulation, and fixation screws and thermoplastic mask are fabricated using aluminum and titanium alloy, and Carbon compounds. Results: Results show a dose enhancement of up to 396.27% higher compared with that without a Leksell frame and up to 391.25% in thermoplastic mask. Conclusions: Hence, appropriate treatment methods and materials must be used to reduce additional exposure to normal tissues.

Characterization of Low-temperature SU-8 Negative Photoresist Processing for MEMS Applications

  • May Gary S.;Han, Seung-Soo;Hong, Sang-Jeen
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.4
    • /
    • pp.135-139
    • /
    • 2005
  • In this paper, negative SU-8 photoresist processed at low temperature is characterized in terms of delamination. Based on a $3^3$ factorial designed experiment, 27 samples are fabricated, and the degree of delamination is measured for each. In addition, nine samples are fabricated for the purpose of verification. Employing the. neural network modeling technique, a process model is established, and response surfaces are generated to investigate degree of delamination associated with three process parameters: post exposure bake (PEB) temperature, PEB time, and exposure energy. From the response surfaces generated, two significant parameters associated with delamination are identified, and their effects on delamination are analyzed. Higher PEB temperature at a fixed PEB time results in a greater degree of delamination. In addition, a higher dose of exposure energy lowers the temperature at which the delamination begins and also results in a larger degree of delamination. These results identify acceptable ranges of the three process variables to avoid delamination of SU-8 film, which in turn might lead to potential defects in MEMS device fabrication.

Determination of the Kinetic Properties of Platy cod in D for the Inhibition of Pancreatic Lipase Using a 1, 2-Diglyceride- Based Colorimetric Assay

  • Zhao, Hai-Un;Kim, Yeong-Shik
    • Archives of Pharmacal Research
    • /
    • v.27 no.9
    • /
    • pp.968-972
    • /
    • 2004
  • A 1, 2-diglyceride-based multi-step colorimetric assay to measure the pancreatic lipase activ-ity was applied for the determination of the kinetic profiles of the lipase inhibition with a slight modification and the validity verification. With this assay method, our study revealed that platy-codin D, one of major constituents of Platycodi Radix, inhibits the pancreatic lipase activity in a competitive type, with the value of $K_1$ being 0.18${\pm}$0.02 mM. In addition, PO has affected the val-ues of $K_{m}$, app/ and $K_{cat}$/$K_{m}$ in a dose-dependent manner. The results shed a meaningful light on how PO mediates lipid metabolism in the intestinal tracts. On the other hand, since the revised assay is sensitive, rapid, and does not affect the accuracy to the kinetic properties, it is applica-ble not only to evaluation of the kinetic properties of the pancreatic lipase, but also to high-throughput screening of pancreatic lipase activity.

Development of a Cantilevered Patient Table Considering X-ray Transparency (X-선 투과특성을 고려한 외주형 수술용 테이블 개발)

  • Won B.H.;Chun K.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.189-190
    • /
    • 2006
  • A patient table considering x-ray transparency, mechanical safety and compact multi-axis moving mechanism has been developed. The goal of medical imaging technology is to keep radiation exposure of patients during x-raying to a minimum. In order to obtain clear pictures at low dose, however, the x-ray table which supports the patient must be sufficiently permeable to radiation to allow good image resolution. The table top is made of low density foam for x-ray transparent effective area and structural aluminum plate to connect moving mechanism under the table, covered with thin carbon fiber. This sandwich construction is very rigid and lightweight, so the table top can handle relatively heavy load comparing to its cantilevered structure which is unavoidable as long as cooperate with C-arm radiography. To verify the design results finite element static analysis and experimental tests have been done. According to the verification the results well satisfy certification guide lines as a medical device.

  • PDF