• Title/Summary/Keyword: Dose Verification

Search Result 227, Processing Time 0.027 seconds

Segmental Analysis Trial of Volumetric Modulated Arc Therapy for Quality Assurance of Linear Accelerator

  • Rahman, Mohammad Mahfujur;Kim, Chan Hyeong;Huh, Hyun Do;Kim, Seonghoon
    • Progress in Medical Physics
    • /
    • v.30 no.4
    • /
    • pp.128-138
    • /
    • 2019
  • Purpose: Segmental analysis of volumetric modulated arc therapy (VMAT) is not clinically used for compositional error source evaluation. Instead, dose verification is routinely used for plan-specific quality assurance (QA). While this approach identifies the resultant error, it does not specify which machine parameter was responsible for the error. In this research study, we adopted an approach for the segmental analysis of VMAT as a part of machine QA of linear accelerator (LINAC). Methods: Two portal dose QA plans were generated for VMAT QA: a) for full arc and b) for the arc, which was segmented in 12 subsegments. We investigated the multileaf collimator (MLC) position and dosimetric accuracy in the full and segmented arc delivery schemes. A MATLAB program was used to calculate the MLC position error from the data in the dynalog file. The Gamma passing rate (GPR) and the measured to planned dose difference (DD) in each pixel of the electronic portal imaging device was the measurement for dosimetric accuracy. The eclipse treatment planning system and a MATLAB program were used to calculate the dosimetric accuracy. Results: The maximum root-mean-square error of the MLC positions were <1 mm. The GPR was within the range of 98%-99.7% and was similar in both types of VMAT delivery. In general, the DD was <5 calibration units in both full arcs. A similar DD distribution was found for continuous arc and segmented arcs sums. Exceedingly high DD were not observed in any of the arc segment delivery schemes. The LINAC performance was acceptable regarding the execution of the VMAT QA plan. Conclusions: The segmental analysis proposed in this study is expected to be useful for the prediction of the delivery of the VMAT in relation to the gantry angle. We thus recommend the use of segmental analysis of VMAT as part of the regular QA.

The Removal of Algae by Pre-oxidation (전산화 공정을 이용한 조류제거)

  • Son, Hee-Jong;Jung, Chul-Woo;Bae, Sang-Dae;Choi, Young-Ik;Kang, Lim-Seok
    • Journal of Environmental Science International
    • /
    • v.18 no.3
    • /
    • pp.289-298
    • /
    • 2009
  • The blue-green algae which caused odor problem in the tap water are difficult to precipitate in sedimentation basin and clogged the filter void rapidly. The studies of this paper were not only oxidation, coagulation and sedimentation processes for effectively removing blue-green algae but yellow clay and polyamine for verification as coagulants aids. The results of this research are summarized as follows: Higher ozone dose(C) and longer contact time(T) were needed for a high degree of removing blue-green algae efficiency. the removal rate of blue-green algae was proportional to the $C\times T$ value. The removal percent of chlorophyll-a by sedimentation and filter without pre-ozonation was about 75% but 1 mg/L pre-ozonation could increase the removal percent of chlorophyll-a to 99% and more pre-ozonation could remove completely. Though the removal efficiency of turbidity could increased by high dose of chlorination, the dissolved organic carbon was increased. More chlorine dose from 4 to 10 mg/L dissolved organic carbon was decreased. Using yellow clay as coagulant aids increased density of floc so the settling velocity of floc become rising but polyamine could not increase settling velocity of floc though it could formated large floc.

Estimation of the Number of Salmonellosis Using Microbial Risk Assessment Methodology (미생물 위해성 평가 방법을 이용한 살모넬라 발생수 추정)

  • 최은영;박경진
    • The Korean Journal of Community Living Science
    • /
    • v.15 no.2
    • /
    • pp.167-177
    • /
    • 2004
  • The number of foodborne salmonellosis was estimated by using microbial risk assessment(MRA) methodology and the possibility of application was studied through comparison with previous results. The contamination levels of Salmonella sp. were estimated by using published domestic studies(1997∼2000) and monitoring data (1999∼2001) from food-safety related institutes. Data on food consumption came from the 2001 National Health and Nutrition Survey, and dose-response models from studies in other countries. Simulation results showed that there were 753,368 cases of salmonellosis in Korea in 1 year, which is about 115 times that reported in previous years and lower than the WHO's estimation increase. From these results, microbial risk assessment is likely to be available for estimation of the number of foodborne illnesses and determination of the order of priority in food-safety management. Butthe verification methods are not established and most of the data on contamination levels of foodborne bacteria, food consumption, and dose-response relationships have not been established. In addition, the actual conditions of circulation, storage and cooking must be studied further.

  • PDF

Safety Verification through Repeated Dose 90-Day Oral Toxicity Test of Schisandra Fruit Extract Powder(SFEP) (오미자추출물(SFEP)의 90일 반복경구투여 독성 시험을 통한 안전성 검증)

  • Seokho Kim;Nayoung Kim;Young-Suk Kim;Jong-Min Lim;Bon-Hwa Ku;Tae Woo Oh;Eun Ji Go;Kyeong Tae Kwak;Byeong Yeob Jeon
    • Herbal Formula Science
    • /
    • v.31 no.4
    • /
    • pp.327-339
    • /
    • 2023
  • Objectives : This study conducted a repeated dose 90-day oral toxicity test in order to up-cycling Schisandra fruit extract powder(SFEP) using discarded Schisandra chinensis by-products and evaluated the NOAEL of SFEP. Methods : SD-rats were orally administered SFEP at concentrations of 0, 62.5, 125, and 250 mg/kg once daily for 90 days. Body weights and clinical signs were observed during the administration period. After completion of the experiment, the experimental animals were autopsied to observe necropsy findings and organ weights changes, and hematological parameters and blood chemistry values were measured. Results : During the SFEP administration period, clinical signs such as salivation, wounds, and erosion were sporadically observed in 1 to 2 animals. In the SFEP 250 mg/kg administered group, weights of the liver and thyroid gland significantly increased compared to the control group, but no significant changes were observed in organ weights according to body weights. As a result of measuring hematological parameters and blood chemistry values, a decrease in RDW, T-BIL, and TBA, and an increase in TP, ALB, and Ca were observed due to SFEP administration. However, these changes following SFEP administration were accidental and not dose-dependent. Additionally, no correlation was found between gender and other parameters. Conclusions : Therefore, the NOAEL of SFEP was confirmed to be 250 mg/kg.

Development of Two-dimensional Prompt-gamma Measurement System for Verification of Proton Dose Distribution (이차원 양성자 선량 분포 확인을 위한 즉발감마선 이차원분포 측정 장치 개발)

  • Park, Jong Hoon;Lee, Han Rim;Kim, Chan Hyeong;Kim, Sung Hun;Kim, Seonghoon;Lee, Se Byeong
    • Progress in Medical Physics
    • /
    • v.26 no.1
    • /
    • pp.42-51
    • /
    • 2015
  • In proton therapy, verification of proton dose distribution is important to treat cancer precisely and to enhance patients' safety. To verify proton dose distribution, in a previous study, our team incorporated a vertically-aligned one-dimensional array detection system. We measured 2D prompt-gamma distribution moving the developed detection system in the longitudinal direction and verified similarity between 2D prompt-gamma distribution and 2D proton dose distribution. In the present, we have developed two-dimension prompt-gamma measurement system consisted of a 2D parallel-hole collimator, 2D array-type NaI(Tl) scintillators, and multi-anode PMT (MA-PMT) to measure 2D prompt-gamma distribution in real time. The developed measurement system was tested with $^{22}Na$ (0.511 and 1.275 MeV) and $^{137}Cs$ (0.662 MeV) gamma sources, and the energy resolutions of 0.511, 0.662 and 1.275 MeV were $10.9%{\pm}0.23p%$, $9.8%{\pm}0.18p%$ and $6.4%{\pm}0.24p%$, respectively. Further, the energy resolution of the high gamma energy (3.416 MeV) of double escape peak from Am-Be source was $11.4%{\pm}3.6p%$. To estimate the performance of the developed measurement system, we measured 2D prompt-gamma distribution generated by PMMA phantom irradiated with 45 MeV proton beam of 0.5 nA. As a result of comparing a EBT film result, 2D prompt-gamma distribution measured for $9{\times}10^9$ protons is similar to 2D proton dose distribution. In addition, the 45 MeV estimated beam range by profile distribution of 2D prompt gamma distribution was $17.0{\pm}0.4mm$ and was intimately related with the proton beam range of 17.4 mm.

Monte Carlo Study Using GEANT4 of Cyberknife Stereotactic Radiosurgery System (GEANT4를 이용한 정위적 사이버나이프 선량분포의 계산과 측정에 관한 연구)

  • Lee, Chung-Il;Shin, Jae-Won;Shin, Hun-Joo;Jung, Jae-Yong;Kim, Yon-Lae;Min, Jeong-Hwan;Hong, Seung-Woo;Chung, Su-Mi;Jung, Won-Gyun;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.21 no.2
    • /
    • pp.192-200
    • /
    • 2010
  • Cyberknife with small field size is more difficult and complex for dosimetry compared with conventional radiotherapy due to electronic disequilibrium, steep dose gradients and spectrum change of photons and electrons. The purpose of this study demonstrate the usefulness of Geant4 as verification tool of measurement dose for delivering accurate dose by comparing measurement data using the diode detector with results by Geant4 simulation. The development of Monte Carlo Model for Cyberknife was done through the two-step process. In the first step, the treatment head was simulated and Bremsstrahlung spectrum was calculated. Secondly, percent depth dose (PDD) was calculated for six cones with different size, i.e., 5 mm, 10 mm, 20 mm, 30 mm, 50 mm and 60 mm in the model of water phantom. The relative output factor was calculated about 12 fields from 5 mm to 60 mm and then it compared with measurement data by the diode detector. The beam profiles and depth profiles were calculated about different six cones and about each depth of 1.5 cm, 10 cm and 20 cm, respectively. The results about PDD were shown the error the less than 2% which means acceptable in clinical setting. For comparison of relative output factors, the difference was less than 3% in the cones lager than 7.5 mm. However, there was the difference of 6.91% in the 5 mm cone. Although beam profiles were shown the difference less than 2% in the cones larger than 20 mm, there was the error less than 3.5% in the cones smaller than 20 mm. From results, we could demonstrate the usefulness of Geant4 as dose verification tool.

Verification of Clinical Usefulness of Jaw Tracking in IMRT (IMRT에 있어 Jaw Tracking 의 임상적 유용성 검증)

  • Kim, Jin-young;Kim, Ki-Hwan
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.2
    • /
    • pp.105-109
    • /
    • 2020
  • Intensity-modulated radiotherapy(IMRT) has disadvantages such as increasing the low doses of irradiation to normal tissues and accumulated dose for the whole volume by leakage and transmission of the Multi Leaf Collimator (MLC). The accumulated dose and low dose may increase the occurrence of secondary malignant neoplasms. For this reasons, the jaw tracking function of the TrueBeam (Varian Medical Systems, Palo Alto, CA) was developed to reduce the leakage and transmission dose of the MLC with existing linear accelerators. But quantitative analysis of the dose reduction has not been verified. Therefore, in the present study, we intended to verify the clinical possibility of utilizing the jaw tracking function in brain tumor with comparison of treatment plans. To accomplish this, 3 types of original treatment plans were made using Eclipse11 (Varian Medical Systems, Palo Alto, CA): 1) beyond 2 cm distance from the Organs At Risk (OARs); 2) within 2 cm distance from the OARs; and 3) intersecting with the OARs. Jaw tracking treatment plans were also made with copies of the original treatment planning using Smart LMC Version 11.0.31 (Varian Medical Systems, Palo Alto, CA). A comparison between the 2 types of treatment planning methods was performed using the difference of the mean dose and maximum dose to the OARs in cumulative Dose Volume Histogram (DVH). In the DVH comparison, the maximum difference of 0.5 % was observed between the planning methods in the case of over 2 cm distance, and the maximum of 0.6 % was obtained for within the 2 cm distance. For the case intersecting with the OAR, the maximum difference of 2 % was achieved. According to these results, it could be realized that the differences of mean dose and maximum dose to the OARs was larger when the OARs and PTV were closer. Therefore, treatment plans with the jaw tracking function consistently affected the dose reduction and the clinical possibility could be verified.

A study to 3D dose measurement and evaluation for Respiratory Motion in Lung Cancer Stereotactic Body Radiotherapy Treatment (폐암의 정위적체부방사선치료시 호흡 움직임에 따른 3D 선량 측정평가)

  • Choi, Byeong-Geol;Choi, Chang-Heon;Yun, Il-Gyu;Yang, Jin-Seong;Lee, Dong-Myeong;Park, Ju-Mi
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.1
    • /
    • pp.59-67
    • /
    • 2014
  • Purpose : This study aims to evaluate 3D dosimetric impact for MIP image and each phase image in stereotactic body radiotherapy (SBRT) for lung cancer using volumetric modulated arc therapy (VMAT). Materials and Methods : For each of 5 patients with non-small-cell pulmonary tumors, a respiration-correlated four-dimensional computed tomography (4DCT) study was performed. We obtain ten 3D CT images corresponding to phases of a breathing cycle. Treatment plans were generated using MIP CT image and each phases 3D CT. We performed the dose verification of the TPS with use of the Ion chamber and COMPASS. The dose distribution that were 3D reconstructed using MIP CT image compared with dose distribution on the corresponding phase of the 4D CT data. Results : Gamma evaluation was performed to evaluate the accuracy of dose delivery for MIP CT data and 4D CT data of 5 patients. The average percentage of points passing the gamma criteria of 2 mm/2% about 99%. The average Homogeneity Index difference between MIP and each 3D data of patient dose was 0.03~0.04. The average difference between PTV maximum dose was 3.30 cGy, The average different Spinal Coad dose was 3.30 cGy, The average of difference with $V_{20}$, $V_{10}$, $V_5$ of Lung was -0.04%~2.32%. The average Homogeneity Index difference between MIP and each phase 3d data of all patient was -0.03~0.03. The average PTV maximum dose difference was minimum for 10% phase and maximum for 70% phase. The average Spain cord maximum dose difference was minimum for 0% phase and maximum for 50% phase. The average difference of $V_{20}$, $V_{10}$, $V_5$ of Lung show bo certain trend. Conclusion : There is no tendency of dose difference between MIP with 3D CT data of each phase. But there are appreciable difference for specific phase. It is need to study about patient group which has similar tumor location and breathing motion. Then we compare with dose distribution for each phase 3D image data or MIP image data. we will determine appropriate image data for treatment plan.

Evaluation of the Jaw-Tracking Technique for Volume-Modulated Radiation Therapy in Brain Cancer and Head and Neck Cancer (뇌암 및 두경부암 체적변조방사선치료시 Jaw-Tracking 기법의 선량학적 유용성 평가)

  • Kim, Hee Sung;Moon, Jae Hee;Kim, Koon Joo;Seo, Jung Min;Lee, Joung Jin;Choi, Jae Hoon;Kim, Sung Ki;Jang, In-Gi
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.30 no.1_2
    • /
    • pp.177-183
    • /
    • 2018
  • Purpose : Volumetric Modulated Arc Therapy(VMAT) has the advantage of uniformly and precisely irradiating the tumor to the shape of the tumor while reducing the risk of radiation damage to normal tissues. such as brain cancer, head and neck cancer and prostate cancer, It is being used for treatment. The purpose of this study is to evaluate the usefulness of the Jaw-Tracking technique(JTT) in VMAT for brain and head and neck cancer. Materials and Methods : We selected eight patients with brain and head and neck cancer(4 Brain, 4 head and neck) who were treated with the VMAT treatment technique. Contouring information of the patient's tumor and normal organ was fused to the Rando phantom using the deformable registration of Velocity(Varian, USA). A treatment plan was developed using the Varian Eclipse(ver 15.5, Varian, USA) with the same patient actual beam parameters except for the use of jaw-tracking. As the evaluation index, the maximum dose and mean dose of target and OAR were compared and a portal dosimetry was performed for the treatment plan verification. Results : When using JTT, the relative dose of OAR decreased by 5.24 % and the maximum dose by 7.05 %, respectively, compared with the Static-Jaw technique(SJT). In the various OARs, the mean dose and maximum dose reduction ranges ranged from 0.01 to 3.16 Gy and from 0.12 to 6.27 Gy, respectively. In the case of the target, the maximum dose of GTV, CTV, PTV decreased by 0.17 %, 0.43 %, and 0.37 % in JTT, and the mean dose decreased by 0.24 %, 0.47 % and 0.47 %, respectively. Gamma analysis The JTT and SJT passing rates were $98{\pm}1.73%$ and $97{\pm}1.83%$ on the basis of 3 % / 3 mm, respectively. Comparing the doses of all OARs applied to the experiment, it was found that the use of JTT resulted in a significant decrease in dose due to additional jaw shielding besides MLC than SJT. Conclusion : In radiation therapy using VMAT treatment plan, we can apply JTT in the case of adjacent tumor and normal organs such as brain cancer and head and neck cancer, and in radiotherapy required large field and high energy caused increase leakage dose through MLC. It is considered that the target dose of PTV can be increased by lowering the dose of normal tissue surrounding the tumor.

  • PDF

4-Dimensional dose evaluation using deformable image registration in respiratory gated radiotherapy for lung cancer (폐암의 호흡동조방사선치료 시 변형영상정합을 이용한 4차원 선량평가)

  • Um, Ki Cheon;Yoo, Soon Mi;Yoon, In Ha;Back, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.30 no.1_2
    • /
    • pp.83-95
    • /
    • 2018
  • Purpose : After planning the Respiratory Gated Radiotherapy for Lung cancer, the movement and volume change of sparing normal structures nearby target are not often considered during dose evaluation. This study carried out 4-D dose evaluation which reflects the movement of normal structures at certain phase of Respiratory Gated Radiotherapy, by using Deformable Image Registration that is well used for Adaptive Radiotherapy. Moreover, the study discussed the need of analysis and established some recommendations, regarding the normal structures's movement and volume change due to Patient's breathing pattern during evaluation of treatment plans. Materials and methods : The subjects were taken from 10 lung cancer patients who received Respiratory Gated Radiotherapy. Using Eclipse(Ver 13.6 Varian, USA), the structures seen in the top phase of CT image was equally set via Propagation or Segmentation Wizard menu, and the structure's movement and volume were analyzed by Center-to Center method. Also, image from each phase and the dose distribution were deformed into top phase CT image, for 4-dimensional dose evaluation, via VELOCITY Program. Also, Using $QUASAR^{TM}$ Phantom(Modus Medical Devices) and $GAFCHROMIC^{TM}$ EBT3 Film(Ashland, USA), verification carried out 4-D dose distribution for 4-D gamma pass rate. Result : The movement of the Inspiration and expiration phase was the most significant in axial direction of right lung, as $0.989{\pm}0.34cm$, and was the least significant in lateral direction of spinal cord, as -0.001 cm. The volume of right lung showed the greatest rate of change as 33.5 %. The maximal and minimal difference in PTV Conformity Index and Homogeneity Index between 3-dimensional dose evaluation and 4-dimensional dose evaluation, was 0.076, 0.021 and 0.011, 0.0 respectfully. The difference of 0.0045~2.76 % was determined in normal structures, using 4-D dose evaluation. 4-D gamma pass rate of every patients passed reference of 95 % gamma pass rate. Conclusion : PTV Conformity Index was more significant in all patients using 4-D dose evaluation, but no significant difference was observed between two dose evaluations for Homogeneity Index. 4-D dose distribution was shown more homogeneous dose compared to 3D dose distribution, by considering the movement from breathing which helps to fill out the PTV margin area. There was difference of 0.004~2.76 % in 4D evaluation of normal structure, and there was significant difference between two evaluation methods in all normal structures, except spinal cord. This study shows that normal structures could be underestimated by 3-D dose evaluation. Therefore, 4-D dose evaluation with Deformable Image Registration will be considered when the dose change is expected in normal structures due to patient's breathing pattern. 4-D dose evaluation with Deformable Image Registration is considered to be a more realistic dose evaluation method by reflecting the movement of normal structures from patient's breathing pattern.

  • PDF