• Title/Summary/Keyword: Dose Optimization

Search Result 241, Processing Time 0.018 seconds

Multi-layers grid environment modeling for nuclear facilities: A virtual simulation-based exploration of dose assessment and dose optimization

  • Jia, Ming;Li, Mengkun;Mao, Ting;Yang, Ming
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.956-963
    • /
    • 2020
  • Dose optimization for Radioactive Occupational Personal (ROP) is an important subject in nuclear and radiation safety field. The geometric environment of a nuclear facility is complex and the work area is radioactive, so traditional navigation model and radioactive data field cannot form an effective environment model for dose assessment and dose optimization. The environment model directly affects dose assessment and indirectly affects dose optimization, this is an urgent problem needed to be solved. Therefore, this paper focuses on an environment model used for Dose Assessment and Dose Optimization (DA&DO). We designed a multi-layer radiation field coupling modeling method, and then explored the influence of the environment model to DA&DO by virtual simulation. Then, a simulation test is done, the multi-layer radiation field coupling model for nuclear facilities is demonstrated to be effective for dose assessment and dose optimization through the experiments and analysis.

IMRT optimization on multiple slice using gradient based algorithm (Gradient based algorithm을 이용한 multiple slice IMRT optimization)

  • Lee, Byung-Yong;Cho, Byung-Chul;Lee, Seok;Jung, Won-Kyun;An, Seung-Do;Choi, Eun-Kyung;Kim, Jong-Hoon;Jang, Hye-Sook
    • Progress in Medical Physics
    • /
    • v.9 no.4
    • /
    • pp.201-206
    • /
    • 1998
  • IMRT optimization method on multiple slice has been developed by using gradient based algorithm. On about 10-30 CT slices including treatment region of a patient, dose optimization has been performed slice by slice to meet the condition that each organ should be exposed below maximum tolerable doses and that the tumor dose within the range of 100$\pm$5 %. Field size was limited to 8$\times$8 cm$^2$ and in this condition, beam divergence was not taken into account to calculate dose distribution. Total dose distribution was calculated by superposing each beamlet whose dose distribution had been precalculated. In order to investigate beam number dependency, dose optimization was performed for one, three, five, seven, and nine coplanar beams and then each optimization index was evaluated. It is found that optimization time was proportional to number of slices to be optimized, and the most efficient plan was obtained from the case of three-to-seven incident beams with respect to calculation time and optimization index. In conclusion, dose optimization of multiple slice was able to be obtained by repeating dose optimization of single slice under condition that the beam size is not too large to ignore beam divergence. And it turns out that result of dose optimization was so sensitive to the position of isocenter that some method to optimize isocenter position is needed to improve it.

  • PDF

Comparison of Cost Function of IMRT Optimization with RTP Research Tool Box (RTB)

  • Ko, Young-Eun;Yi, Byong-Yong;Lee, Sang-Wook;Ahn, Seung-Do;Kim, Jong-Hoon;Park, Eun-Kyung
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.65-67
    • /
    • 2002
  • A PC based software, the RTP Research Tool Box (RTB), was developed for IMRT optimization research. The software was consisted of an image module, a beam registration module, a dose calculation module, a dose optimization module and a dose display module. The modules and the Graphical User Interface (GUI) were designed to easily amendable by negotiating the speed of performing tasks. Each module can be easily replaced to new functions for research purpose. IDL 5.5 (RSI, USA) language was used for this software. Five major modules enable one to perform the research on the dose calculation, on the dose optimization and on the objective function. The comparison of three cost functions, such as the uncomplicated tumor control probability (UTCP), the physical objective function and the pseudo-biological objective function, which was designed in this study, were performed with the RTB. The optimizations were compared to the simulated annealing and the gradient search optimization technique for all of the optimization objective functions. No significant differences were found among the objective functions with the dose gradient search technique. But the DVH analysis showed that the pseudo-biological objective function is superior to the physical objective function when with the simulated annealing for the optimization.

  • PDF

A Study for Optimal Dose Planning in Stereotactic Radiosurgery

  • Suh, Tae-suk
    • Progress in Medical Physics
    • /
    • v.1 no.1
    • /
    • pp.23-29
    • /
    • 1990
  • In order to explane the stereotactic procedure, the three steps of the procedure (target localization, dose planning, and radiation treatment) must be examined separately. The ultimate accuracy of the full procedure is dependent on each of these steps and on the consistancy of the approach The concern in this article was about dose planning, which is a important factor to the success of radiation treatment. The major factor in dose planning is a dosimetry system to evaluate the dose delivered to the target and normal tissues in the patient, while it generates an optimal dose distribution that will satisfy a set of clinical criteria for the patient. A three-dimensional treatment planning program is a prerequisite for treatment plan optimization. It must cover 3-D methods for representing the patient, the dose distributions, and beam settings. The major problems and possible modelings about 3-D factors and optimization technique were discussed to simplify and solve the problems associatied with 3-D optimization, with relative ease and efficiency. These modification can simplify the optimization problem while saving time, and can be used to develop reference dose planning system to prepare standard guideline for the selection of optimum beam parameters, such as the target position, collimator size, arc spacing, the variation in arc length and weight. The method yields good results which can then be simulated and tailored to the individual case. The procedure needed for dose planning in stereotactic radiosurgery is shown in figure 1.

  • PDF

The Optimization Experience of Occupational Exposure during Unclear Power Plant Outage (원자력발전소 계획예방정비 기간중 피폭최적화 경험)

  • Song, Young-Il;Kim, Hyung-Jin;Park, Hun-Kook;Kim, Hee-Geun
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.2
    • /
    • pp.145-154
    • /
    • 2003
  • By optimizing the radiation protection the collective dose and individual dose could be reduced during YGN #4 $5^{th}$ outage in 2001. The collective doses for the two high radiation jobs decreased to 85% and 65% of expected doses. The proportion of workers with low dose (below 1mSv) exposure increased 4% while the proportion of workers with over 3mSv and 5mSv exposure are decreased to 2%, 1% respectively. But none is exposed over 8mSv for the annual dose. To aid decision of utilizing the robot, cost- benefit analysis was performed and reasonable point was proposed to use the robot. For the first time job, repeated ALARA meeting and mock up training were implemented to set up working procedure by identifying the trouble. To easily set up standard procedure, mockup process was videotaped and reviewed during ALARA meeting. Monitoring is a good approach to chase radiological working condition such as working time, dose rate. behavior of workers, especially for high radiation work. Those data were estimated and adjusted from the stage of work planning to mock up. At the stage of actual work the monitoring data were compared to the estimation and recorded to database. This database will not only be used as a powerful tool for dose optimization at the following outage but also as a guideline to dose constraint set up for optimization for each specific situation.

The Determination of Optimum Beam Position and Size in Radiation Treatment (방사선치료시 최적의 빔 위치와 크기 결정)

  • 박정훈;서태석;최보영;이형구;신경섭
    • Progress in Medical Physics
    • /
    • v.11 no.1
    • /
    • pp.49-57
    • /
    • 2000
  • New method about the dose optimization problem in radiation treatment was researched. Since all conditions are more complex and there are more relevant variables, the solution of three-dimensional treatment planning is much more complicate than that of current two-dimensional one. There(ore, in this study, as a method to solve three-dimensional dose optimization problem, the considered variables was minized and researched by reducing the domain that solutions can exist and pre-determining the important beam parameters. First, the dangerous beam range that passes critical organ was found by coordinate transformation between linear accelerator coordinate and patient coordinate. And the beam size and rotation angle for rectangular collimator that conform tumor at arbitrary beam position was also determined. As a result, the available beam position could be reduced and the dependency on beam size and rotation angle, that is very important parameter in treatment planning, totally removed. Therefore, the resultant combinations of relevant variables could be greatly reduced and the dose optimization by objective function can be done with minimum variables. From the above results, the dose optimization problem was solved for the two-dimensional radiation treatment planning useful in clinic. The objective function was made by combination of dose gradient, critical organ dose and dose homogeniety. And the optimum variables were determined by applying step search method to objective function. From the dose distributions by optimum variables, the merit of new dose optimization method was verified and it can be implemented on commercial radiation treatment planning system with further research.

  • PDF

Analysis of the major factors of influence on the conditions of the Intensity Modulated Radiation Therapy planning optimization in Head and Neck (두경부 세기견조방사선치료계획 최적화 조건에서 주요 인자들의 영향 분석)

  • Kim, Dae Sup;Lee, Woo Seok;Yoon, In Ha;Back, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.1
    • /
    • pp.11-19
    • /
    • 2014
  • Purpose : To derive the most appropriate factors by considering the effects of the major factors when applied to the optimization algorithm, thereby aiding the effective designing of a ideal treatment plan. Materials and Methods : The eclipse treatment planning system(Eclipse 10.0, Varian, USA) was used in this study. The PBC (Pencil Beam Convolution) algorithm was used for dose calculation, and the DVO (Dose Volume Optimizer 10.0.28) Optimization algorithm was used for intensity modulated radiation therapy. The experimental group consists of patients receiving intensity modulated radiation therapy for the head and neck cancer and dose prescription to two planned target volume was 2.2 Gy and 2.0 Gy simultaneously. Treatment plan was done with inverse dose calculation methods utilizing 6 MV beam and 7 fields. The optimal algorithm parameter of the established plan was selected based on volume dose-priority(Constrain), dose fluence smooth value and the impact of the treatment plan was analyzed according to the variation of each factors. Volume dose-priority determines the reference conditions and the optimization process was carried out under the condition using same ratio, but different absolute values. We evaluated the surrounding normal organs of treatment volume according to the changing conditions of the absolute values of the volume dose-priority. Dose fluence smooth value was applied by simply changing the reference conditions (absolute value) and by changing the related volume dose-priority. The treatment plan was evaluated using Conformal Index, Paddick's Conformal Index, Homogeneity Index and the average dose of each organs. Results : When the volume dose-priority values were directly proportioned by changing the absolute values, the CI values were found to be different. However PCI was $1.299{\pm}0.006$ and HI was $1.095{\pm}0.004$ while D5%/D95% was $1.090{\pm}1.011$. The impact on the prescribed dose were similar. The average dose of parotid gland decreased to 67.4, 50.3, 51.2, 47.1 Gy when the absolute values of the volume dose-priority increased by 40,60,70,90. When the dose smooth strength from each treatment plan was increased, PCI value increased to $1.338{\pm}0.006$. Conclusion : The optimization algorithm was more influenced by the ratio of each condition than the absolute value of volume dose-priority. If the same ratio was maintained, similar treatment plan was established even if the absolute values were different. Volume dose-priority of the treatment volume should be more than 50% of the normal organ volume dose-priority in order to achieve a successful treatment plan. Dose fluence smooth value should increase or decrease proportional to the volume dose-priority. Volume dose-priority is not enough to satisfy the conditions when the absolute value are applied solely.

Consideration about Radiological Technology Student's Frequent Workers Exposure Dose Rate (방사선과 재학생의 수시출입자 방사선 피폭선량에 대한 고찰)

  • Park, Hoon-Hee
    • Journal of radiological science and technology
    • /
    • v.41 no.6
    • /
    • pp.573-580
    • /
    • 2018
  • The Nuclear Safety Commission amended the Nuclear Safety Act by strengthening the safety management system for the frequent workers to the level of radiation workers. And students entering radiation management zones for testing and practical purposes are subject to frequent workers. It is inevitable that this will incur additional costs. In this paper, the validity of the amendment to the Nuclear Safety Act was to be assessed in terms of radiation protection. Study subjects are from 2014 to 2016, among university students in Seong-nam Korea and comparisons for analyses were made taking into account variables that are differences in annual, practical types, on-class and clinical practice students exposure dose. The analysis showed that exposures between on-class and clinical practice received were less than the annual dose limit of 1 mSv for the public. Then, some alternatives that excluding from frequent workers during on-class practice or mitigating the frequent workers' safety regulation for only on-class frequent workers can be considered. Optimization is how rational is the reduction in exposure dose to the costs required. Therefore, the results are hardly considered for optimization. If the data accumulated, it could be considered that the revision of the act could be evaluated and improved.

Radiation shielding optimization design research based on bare-bones particle swarm optimization algorithm

  • Jichong Lei;Chao Yang;Huajian Zhang;Chengwei Liu;Dapeng Yan;Guanfei Xiao;Zhen He;Zhenping Chen;Tao Yu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2215-2221
    • /
    • 2023
  • In order to further meet the requirements of weight, volume, and dose minimization for new nuclear energy devices, the bare-bones multi-objective particle swarm optimization algorithm is used to automatically and iteratively optimize the design parameters of radiation shielding system material, thickness, and structure. The radiation shielding optimization program based on the bare-bones particle swarm optimization algorithm is developed and coupled into the reactor radiation shielding multi-objective intelligent optimization platform, and the code is verified by using the Savannah benchmark model. The material type and thickness of Savannah model were optimized by using the BBMOPSO algorithm to call the dose calculation code, the integrated optimized data showed that the weight decreased by 78.77%, the volume decreased by 23.10% and the dose rate decreased by 72.41% compared with the initial solution. The results show that the method can get the best radiation shielding solution that meets a lot of different goals. This shows that the method is both effective and feasible, and it makes up for the lack of manual optimization.

The Availability of the step optimization in Monaco Planning system (모나코 치료계획 시스템에서 단계적 최적화 조건 실현의 유용성)

  • Kim, Dae Sup
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.207-216
    • /
    • 2014
  • Purpose : We present a method to reduce this gap and complete the treatment plan, to be made by the re-optimization is performed in the same conditions as the initial treatment plan different from Monaco treatment planning system. Materials and Methods : The optimization is carried in two steps when performing the inverse calculation for volumetric modulated radiation therapy or intensity modulated radiation therapy in Monaco treatment planning system. This study was the first plan with a complete optimization in two steps by performing all of the treatment plan, without changing the optimized condition from Step 1 to Step 2, a typical sequential optimization performed. At this time, the experiment was carried out with a pencil beam and Monte Carlo algorithm is applied In step 2. We compared initial plan and re-optimized plan with the same optimized conditions. And then evaluated the planning dose by measurement. When performing a re-optimization for the initial treatment plan, the second plan applied the step optimization. Results : When the common optimization again carried out in the same conditions in the initial treatment plan was completed, the result is not the same. From a comparison of the treatment planning system, similar to the dose-volume the histogram showed a similar trend, but exhibit different values that do not satisfy the conditions best optimized dose, dose homogeneity and dose limits. Also showed more than 20% different in comparison dosimetry. If different dose algorithms, this measure is not the same out. Conclusion : The process of performing a number of trial and error, and you get to the ultimate goal of treatment planning optimization process. If carried out to optimize the completion of the initial trust only the treatment plan, we could be made of another treatment plan. The similar treatment plan could not satisfy to optimization results. When you perform re-optimization process, you will need to apply the step optimized conditions, making sure the dose distribution through the optimization process.