• 제목/요약/키워드: Dose Calculation

Search Result 522, Processing Time 0.02 seconds

Evaluation of Skin Dose of Intensity Modulated Radiation Therapy in Breast Cancer Patients (유방암환자의 세기조절방사선치료에서 피부선량 평가)

  • Kim, Sung-Kyu;Kim, Myung-Se;Yun, Sang-Mo
    • Progress in Medical Physics
    • /
    • v.18 no.3
    • /
    • pp.167-171
    • /
    • 2007
  • In the case of radiotherapy following breast conservation therapy for breast cancer patients, the characteristic of skin dose was investigated in the treatment of intensity modulated radiation therapy (IMRT) for breast cancer patients by comparing and analysing entrance skin dose irradiated during radiotherapy using tangential technique radiotherpy, and IMRT. The calculation dose irradiated to breast skin was compared with TLD measurement dose in treatment planning by performing the two methods of radiotherapy using tangential technique, and IMRT in treatment planning equipment. The skin absorbed dose was measured to pass a nipple by spacing of 1 cm distance from center to edge of body. In the radiotherapy of tangential technique, for the irradiation of 180 cGy to PTV, the calculation dose was ranged from 103.5 cGy to 155.2 cGy, measurement dose was ranged from 107.5 cGy to 156.2 cGy, and skin dose in the center was maximum 1.45 times more irradiated than that in the edge. In the IMRT, for the irradiation of 180 cGy to PTV, the calculation dose was ranged 9.8 cGy at 80.2 cGy, measurement dose was ranged 8.9 cGy at 77.2 cGy, and skin dose in the center was maximum 0.23 times less irradiated than that in the edge. IMRT was more effective for skin radiation risks because radiation dose irradiated to skin in IMRT was much less than that in radiotherapy of tangential field technique.

  • PDF

IMPROVEMENT OF DOSE CALCULATION ACCURACY ON kV CBCT IMAGES WITH CORRECTED ELECTRON DENSITY TO CT NUMBER CURVE

  • Ahn, Beom Seok;Wu, Hong-Gyun;Yoo, Sook Hyun;Park, Jong Min
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.1
    • /
    • pp.17-24
    • /
    • 2015
  • To improve accuracy of dose calculation on kilovoltage cone beam computed tomography (kV CBCT) images, a custom-made phantom was fabricated to acquire an accurate CT number to electron density curve by full scatter of cone beam x-ray. To evaluate the dosimetric accuracy, 9 volumetric modulated arc therapy (VMAT) plans for head and neck (HN) cancer and 9 VMAT plans for lung cancer were generated with an anthropomorphic phantom. Both CT and CBCT images of the anthropomorphic phantom were acquired and dose-volumetric parameters on the CT images with CT density curve (CTCT), CBCT images with CT density curve ($CBCT_{CT}$) and CBCT images with CBCT density curve ($CBCT_{CBCT}$) were calculated for each VMAT plan. The differences between $CT_{CT}$ vs. $CBCT_{CT}$ were similar to those between $CT_{CT}$ vs. $CBCT_{CBCT}$ for HN VMAT plans. However, the differences between $CT_{CT}$ vs. $CBCT_{CT}$ were larger than those between $CT_{CT}$ vs. $CBCT_{CBCT}$ for lung VMAT plans. Especially, the differences in $D_{98%}$ and $D_{95%}$ of lung target volume were statistically significant (4.7% vs. 0.8% with p = 0.033 for $D_{98%}$ and 4.8% vs. 0.5% with p = 0.030 for $D_{95%}$). In order to calculate dose distributions accurately on the CBCT images, CBCT density curve generated with full scatter condition should be used especially for dose calculations in the region of large inhomogeneity.

Optimal Density Assignment to 2D Diode Array Detector for Different Dose Calculation Algorithms in Patient Specific VMAT QA

  • Park, So-Yeon;Park, Jong Min;Choi, Chang Heon;Chun, Minsoo;Han, Ji Hye;Cho, Jin Dong;Kim, Jung-in
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.1
    • /
    • pp.9-15
    • /
    • 2017
  • Background: The purpose of this study is to assign an appropriate density to virtual phantom for 2D diode array detector with different dose calculation algorithms to guarantee the accuracy of patient-specific QA. Materials and Methods: Ten VMAT plans with 6 MV photon beam and ten VMAT plans with 15 MV photon beam were selected retrospectively. The computed tomography (CT) images of MapCHECK2 with MapPHAN were acquired to design the virtual phantom images. For all plans, dose distributions were calculated for the virtual phantoms with four different materials by AAA and AXB algorithms. The four materials were polystyrene, 455 HU, Jursinic phantom, and PVC. Passing rates for several gamma criteria were calculated by comparing the measured dose distribution with calculated dose distributions of four materials. Results and Discussion: For validation of AXB modeling in clinic, the mean percentages of agreement in the cases of dose difference criteria of 1.0% and 2.0% for 6 MV were $97.2%{\pm}2.3%$, and $99.4%{\pm}1.1%$, respectively while those for 15 MV were $98.5%{\pm}0.85%$ and $99.8%{\pm}0.2%$, respectively. In the case of 2%/2 mm, all mean passing rates were more than 96.0% and 97.2% for 6 MV and 15 MV, respectively, regardless of the virtual phantoms of different materials and dose calculation algorithms. The passing rates in all criteria slightly increased for AXB as well as AAA when using 455 HU rather than polystyrene. Conclusion: The virtual phantom which had a 455 HU values showed high passing rates for all gamma criteria. To guarantee the accuracy of patent-specific VMAT QA, each institution should fine-tune the mass density or HU values of this device.

Developments of Space Radiation Dosimeter using Commercial Si Radiation Sensor (범용 실리콘 방사선 센서를 이용한 우주방사선 선량계 개발)

  • Jong-kyu Cheon;Sunghwan Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.3
    • /
    • pp.367-373
    • /
    • 2023
  • Aircrews and passengers are exposed to radiation from cosmic rays and secondary scattered rays generated by reactions with air or aircraft. For aircrews, radiation safety management is based on the exposure dose calculated using a space-weather environment simulation. However, the exposure dose varies depending on solar activity, altitude, flight path, etc., so measuring by route is more suggestive than the calculation. In this study, we developed an instrument to measure the cosmic radiation dose using a general-purpose Si sensor and a multichannel analyzer. The dose calculation applied the algorithm of CRaTER (Cosmic Ray Telescope for the Effects of Radiation), a space radiation measuring device of NASA. Energy and dose calibration was performed with Cs-137 662 keV gamma rays at a standard calibration facility, and good dose rate dependence was confirmed in the experimental range. Using the instrument, the dose was directly measured on the international line between Dubai and Incheon in May 2023, and it was similar to the result calculated by KREAM (Korean Radiation Exposure Assessment Model for Aviation Route Dose) within 12%. It was confirmed that the dose increased as the altitude and latitude increased, consistent with the calculation results by KREAM. Some limitations require more verification experiments. However, we confirmed it has sufficient utilization potential as a cost-effective measuring instrument for monitoring exposure dose inside or on personal aircraft.

Monte Carlo shielding evaluation of a CSNS Multi-Physics instrument

  • Liang, Tairan;Shen, Fei;Yin, Wen;Xu, Juping;Yu, Quanzhi;Liang, Tianjiao
    • Nuclear Engineering and Technology
    • /
    • v.51 no.8
    • /
    • pp.1998-2004
    • /
    • 2019
  • The Multi-Physics (MP) instrument is one of 20 neutron spectrometers planned in the China Spallation Neutron Source (CSNS). This paper presents a shielding calculation for the MP instrument using Monte Carlo codes MCNPX and FLUKA. First, the neutrons that escape from the CSNS decoupled water moderator and are delivered to the beam line of the MP instrument are calculated to use as the source term of the shielding calculation. Then, to validate the calculation method based on multiple variance reduction techniques, a cross check between MCNPX and FLUKA codes is performed by comparing the calculation results of the dose rate distribution on a simplified beam line model. Finally, a complete geometry model of the MP instrument is set up, and the primary parameters for the shielding design are obtained according to the calculated dose rate map considering different worst-case scenarios.

A Cosideration on Physical Aspects in Teleradiotherapy Chart QA (원격방사선치료 기록부의 QA 에서 물리적 측면의 고찰)

  • 강위생;허순녕
    • Progress in Medical Physics
    • /
    • v.10 no.2
    • /
    • pp.95-101
    • /
    • 1999
  • The aims of this report are to classify the incorrect data of patients and the errors of dose and dose distribution observed in QA activities on teleradiotherapy chart, and to analyze their frequency. In our department, radiation physicists check several sheets of patient chart to reduce numeric errors before starting radiation therapy and at least once a week, which include history, port diagram, MU calculation or treatment planning summary and daily treatment sheet. The observed errors are classified as followings. 1) Identity of patient, 2) Omitted or unrecorded history sheet even though not including the item related to dose, 3) Omission of port diagram, or omitted or erroneous data, 4) Erroneous calculation of MU and point dose, and important causes, 5) Loss of summary sheet of treatment planning, and erroneous data of patient in the sheet, 6) Erroneous record of radiation therapy, and errors of daily dose, port setup, MU and accumulated dose in the daily treatment sheet, 7) Errors leading inexact dose or dose distribution, errors not administerd even though its possibility, and simply recorded errors, 8) Omission of sign. Number of errors was counted rather than the number of patients. In radiotherapy chart QA from Jun 17, 1996 to Jul 31, 1999, no error of patient identity had been observed. 431 Errors in 399 patient charts had been observed and there were 405 physical errors, 9 cases of omitted or unrecorded history sheet, and 17 unsigned. There were 23 cases (5.7%) of omitted port diagram, 21 cases (5.2%) of omitted data and 73 cases (18.0 %) of erroneous data in port diagram, 13 cases (3.2 %) treated without MU calculation, 68 cases (16.3 %) of erroneous MU, 8 cases (2.0%) of erroneous point dose, 1 case (0.2 %) of omitted treatment planning summary, 11 cases (2.7%) of erroneous input of patient data, 13 cases (3.2%) of uncorrected record of treatment, 20 cases (4.9%) of discordant daily doses in MU calculation sheet and daily treatment sheet, 33 cases (8.1%) of erroneous setup, 52 cases (12.8%) of MU setting error, 61 cases (15.1%) of erroneous accumulated dose. Cases of error leading inexact dose or dose distribution were 239 (59.0 %), cases of error not administered even though its possibility were 142 (35.1 %), and cases of simply recorded error were 24 (5.9 %). The numeric errors observed in radiotherapy chart ranged over various items. Because errors observed can actually contribute to erroneous dose or dose distribution, or have the possibility to lead such errors, thorough QA activity in physical aspects of radiotherapy charts is required.

  • PDF

Study on the Dose Calculation for Iridium and Cessium Sources (이리듐과 세슘의 혼합선원을 이용한 강내치료의 선량계획에 관한 연구)

  • Kang, Jeong-Ku;Kim, Soo-Kon
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2005.04a
    • /
    • pp.42-46
    • /
    • 2005
  • The Dose calculation program for the Buchler remote after-loading system was developed. We use iridium source for the tandem and cessium for the ovoids. We determined the source length and distributions by dividing the program disk to 72 points. The dose rate for the each program disk were calculated and stored to the tables for the xy coordinates. The dose rate for the interesting points for the patients were calculated by using these tables. We also made isodose curve from the calculations. By using the program, we could calculate the dose rate for the various points of the patient quickly and accurately.

  • PDF

Numerical Calculation of the Deflected Path of Electrons through Water under External Magnetic Fields

  • Jeong, Dong-Hyeok;Kim, Jhin-Kee;Shin, Kyo-Chul;Kim, Ki-Hwan;Kim, Jeung-Kee;Oh, Young-Kee;Ji, Young-Hoo;Lee, Jeong-Ok;Kim, Seung-Kyu
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2003.09a
    • /
    • pp.71-71
    • /
    • 2003
  • The study on magnetic field combined radiation therapy, as a new technique to modify the dose distributions using external magnetic field, has been investigated. The goal of the study is to develop the techniques for dose localization, as a particle beam, from the strong magnetic fields. In this study, in order to study the principle of dose deposition in external fields, as a basic approach, we have calculated approximately the paths of traveling electrons in water under external magnetic fields with numerical methods. The calculations are performed for a primary particle by cumulating the steps which are defined as small path lengths which energy loss can be ignored. In this calculation, the energy loss and direction change for a step was calculated by using total stopping power and Lorentz force equation respectively. We have examined the deflected paths of the electron through water as a function of external magnetic field and incident electron s energy. Since we did not take account of the multiple scattering effects for electrons through water, there are errors in this calculation. However, from the results we can explain the principle of dose variation and dose focusing for electron beams under strong magnetic fields in water.

  • PDF

Preliminary Results on Food Consumpt ion Rates for Off-site Dose Calculation of Nuclear Power Plants (원전 주변 주민의 방사선량 평가를 위한 음식물 섭취량 조사 예비결과)

  • Lee Gab-Bock;Chung Yang-Geun;Bang Sun-Young;Kang Duk-Won
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11a
    • /
    • pp.307-316
    • /
    • 2005
  • The Internal dose by food consumption mostly account for radiological dose of public around nuclear poller plants(NPP). But, food consumption rate applied to off-site dose calculation in Korea which is the result of field investigation around Kori NPP by the KAERI in 1988, is not reflected of the latest dietary characteristics. The Ministry of Health and Welfare Affairs has investigated the food and nutrition of nations every 3 years based on the Law of National Health Improvement. To update the food consumption rates of the maximum individual the analysis of the national food investigation results and field surveys around nuclear power plant sites have been carried out.

  • PDF

Comparative Evaluation of Kerma Area Product and New Fundamental of Kerma Area Product on Radiography (방사선촬영에서 면적선량 및 새로운 실질면적선량 개념의 비교 평가)

  • Choi, Woo Cheol;Kim, Yongmin;Kim, Jung Su
    • Journal of radiological science and technology
    • /
    • v.44 no.1
    • /
    • pp.53-58
    • /
    • 2021
  • Kerma Area Product (KAP) is best indicator of radiation monitoring on radiographic examinations. KAP can be measured differently depending on the X-ray irradiation area, air kerma, souce-skin distance, type of equipment, etc. The major factors are exposure area and the air krema. The KAP currently used only considers the exposure area with X-rays and has a problem that KAP is always excessively overestimated from the dose received by an actual subject. Therefore, in this study, in order to measure the accurate KAP, a new area dose calculation that can be calculated by dividing the area where the actual X-ray is irradiated is presented, and the KAP is the real area. We compared and analyzed how much it was overestimated compared to the dose. The Skull AP projection and seven other projection were compared and analyzed, and the KAP was overestimated in each test by 52% to 60%. In this way, the effective KAP (EKAP) calculation developed through this study should be utilized to prevent extra calculation of the existing KAP, and only the accurate patient subject area should be calculated to derive the accurate area dose value. EKAP is helpful for control the patient's exposure dose more finely, and it is useful for the quality control of medical radiation exposure.