• Title/Summary/Keyword: Dose Calculation

Search Result 525, Processing Time 0.02 seconds

Dosimetry and Three Dimensional Planning for Stereotactic Radiosurgery with SIEMENS 6-MV LINAC (6-MV선형가속기를 이용한 입체방사선수술의 선량측정 및 3차원적 치료계획)

  • Choi Dong-Rak;Cho Byong Chul;Suh Tae-Suk;Chung Su Mi;Choi Il Bong;Shinn Kyung Sub
    • Radiation Oncology Journal
    • /
    • v.11 no.1
    • /
    • pp.175-181
    • /
    • 1993
  • Radiosurgery requires integral procedure where special devices and computer systems are needed for localization, dose planning and treatment. The aim of this work is to verify the overall mechanical accuracy of our LINAC and develop dose calculation algorithm for LINAC radiosurgery. The alignment of treatment machine and the performance testing of the entire system were extensively carried out and the basic data such as percent depth dose, off-axis ratio and output factor were measured. A three dimensional treatment planning system for stereotactic radiosurgery has been developed. We used an IBM personal computer with C programming language (IBM personal system/2, Model 80386, IBM Co., USA) for calculating the dose distribution. As a result, deviations at isocenter on gantry and table rotation for our treatment machine were acceptable since they were less than 2 mm. According to the phantom experiments, the focusing isocenter were successful by the error of less than 2 mm. Finally, the mechanical accuracy of our three dimensional planning system was confirmed by film dosimetry in sphere phantom.

  • PDF

Usefulness Evaluation of HRCT using Reconstruction in Chest CT (흉부CT 검사 시 HRCT 영상 재구성의 유용성)

  • Park, Sung-Min;Kim, Keung-Sik;Kang, Seong-Min;Yoo, Beong-Gyu;Lee, Ki-Bae
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.17 no.1
    • /
    • pp.13-18
    • /
    • 2015
  • Purpose : Skip the repetitive HRCT axial scan in order to reduce the exposure of patients during chest HRCT scan, Helical Scan Data into a reconstructed image, and exposure of the patient change and visually evaluate the usefulness of the HRCT images. Materials and method : Patients were enrolled in the survey are 50 people who underwent chest CT scans of patients who presented to the hospital from January 2015 to March 2015. 50 people surveyed 22 people men and 28 people women people showed an average distribution of 30 to 80 years age was 48 years. 50 patients to Somatom Sensation 64 ch (Siemens) model with 120 kVp tube voltage to a reference mAs tube current to mAs (Care dose, Siemens) as a whole, including the lungs and the chest CT scan was performed. Scan upon each patient CARE dose 4D (Automatic exposure control, Siemens Medical Solution Erlangen, Germany) was to maintain the proper radiation dose scan every cross-section through a device that automatically adjusts the tube current of. CT scan is the rotation time of the Tube slice collimation, slice width 0.6 mm, pitch factor was made under the terms of 1.4. CT scan obtained after the raw data (raw data) to the upper surface of the axial images and coronal images for each slice thickness 1 mm, 5 mm intervals in the high spatial frequency calculation method (hight spatial resolution algorithm, B60 sharp) was the use of the lung window center -500 HU, windows were reconstructed into images in the interval -1000 HU to see. Result : 1. Measure the total value of DLP 50 patients who proceed to chest CT group A (Helical Scan after scan performed with HRCT) and group B (Helical Scan after the HR image reconstruction to the original data) compared with the group divided, analysis As a result of the age, but show little difference for each age group it had a decreased average dose of about 9%. 2. A Radiation read the results of the two Radiologist and a doctor upper lobe and middle lobe of the lung takes effect the visual evaluation is not a big difference between the two images both, depending on the age of the patient, especially if the blood vessels of the lower lobe (A: 3.4, B: 4.6) and bronchi(A: 3.8, B4.7) image shake caused by breathing in anxiety (blurring lead) to the original data (raw data) showed that the reconstructed image is been more useful in diagnostic terms. Conclusion : Scan was confirmed a continuous, rapid motion video to get Helical scan is much lower lobe lung reduction in visual blurring, Helical scan data to not repeat the examination by obtaining HRCT images reorganization reduced the exposure of the patient.

  • PDF

Patient exposure doses from medical x-ray examinations in Korea (진단방사선검사에서 환자피폭선량에 관한 연구)

  • Kim, You-Hyun;Choi, Jong-Hak;Kim, Sung-Soo;Oh, Yuw-Han;Lee, Chan-Hyeup;Cho, Pyong-Kon;Kang, Dae-Hyun;Lee, Young-Bae;Kim, Hyung-Chul;Kim, Chel-Min
    • Journal of radiological science and technology
    • /
    • v.28 no.3
    • /
    • pp.241-248
    • /
    • 2005
  • X-ray examinations represent the largest man-made source of radiation exposure for the population. The need for standardization of radiation exposures has been suggested and the guidance levels for various radiographic and radioisotope examinations has been proposed by the International Atomic Energy Aency(IAEA) as a safety standard. In many countries, the situation of medical radiographic exposures in each country should be researched before the appropriate guidance level is established. In this study, measurements of entrance surface dose, dose-area product(DAP), computed tomograghic dose index(CTDI) and mean glandular dose(MGD) were carried out in patients who underwent routine x-ray examinations, fluoroscopy, computed tomograghy and mamography in Korea. These measured quantities were compared with the results from the calculation method in previous study. And we suggested diagnostic reference levels in medical imaging in Korea.

  • PDF

A Study of Usefulness for Megavoltage Computed Tomography on the Radiation Treatment Planning (메가볼트 에너지 전산화 단층 촬영을 이용한 치료계획의 유용성 연구)

  • Cho, Jeong-Hee;Kim, Joo-Ho;Khang, Hyun-Soo;Lee, Jong-Seok;Yoo, Beong-Gyu
    • Journal of radiological science and technology
    • /
    • v.33 no.4
    • /
    • pp.369-378
    • /
    • 2010
  • The purpose of this study was to investigate image differences between KVCT vs MVCT depending on a high densities metal included in the phantom and to analyze the r values for the purpose of the dose differences between each methods. We verified the possibilities for clinical indications that using MVCT is available for the radiation therapy treatment planning. Cheese phantom was used to get a density table for each CT and CT sinogram data was transferred to radiation planning computer through DICOM_RT. Using this data, the treatment dose plan has been calculated in RTP system. We compared the differences of r values between calculated and measured values, and then applied this data to the real patient's treatment planning. The contrast of MVCT image was superior to KVCT. In KVCT, each pixel which has more than 3.0 of density was difficult to be differentiated, but in MVCT, more than 5.0 density of pixels were distinguished clearly. With the normal phantom, the percentage of the case which has less than 1($r\leq1$, acceptable criteria) of gamma value, was 94.92% for KVCT and 93.87% for MVCT. But with the cheese phantom, which has high density plug, the percentage was 88.25% for KVCT and 93.77% for MVCT respectively. MVCT has many advantages than KVCT. Especially, when the patient has high density metal, such as total hip arthroplasty, MVCT is more efficient to define the anatomical structure around the high density implants without any artifacts. MVCT helps to calculate the treatment dose more accurately.

Variation in Depth Dose Data between Open and Wedge Fields for 6 MV X-Rays (6MV X선에 있어서 쇄기형 조사야와 개방 조사야 사이의 깊이 선량률의 차이)

  • U, Hong;Ryu, Sam-Uel;Park, In-Kyu
    • Radiation Oncology Journal
    • /
    • v.7 no.2
    • /
    • pp.279-285
    • /
    • 1989
  • Central axis depth dose data for 6 MV X-rays, including tissue maximum ratios, were measured for wedge fields according to Tatcher's equation. In wedge fields, the differences in magnitude which increased with depth, field size, and wedge thickness increased when compared with the corresponding open field data. However, phantom scatter correction factors for wedge fields differed less than $1\%$ from the corresponding open field factors. The differences in central axis percent depth dose between two types of fields indicated beam hardening by the wedge filter The deviation of percent depth doses and scatter correction factors between the effective wedge field and the nominal wedge field at same angle was negligible. The differences were less than $3.20\%$ between the nominal or effective wedge fields and the open fields for percent depth doses to the depth 7cm in $6cm{\times}6cm$ field. For larger $(10cm{\times}10cm)$ field size, however, the deviation of percnet depth doses between the nominal or effective wedge fields and the open fields were greater-dosimetric errors were $3.56\%$ at depth 7cm and nearly $5.30\%$ at 12cm. We suggest that the percent depth doses of individual wedge and wedge transmission factors should be considered for the dose calculation or monitor setting in the treatment of deep seated tumor.

  • PDF

Analysis of Tissue Equivalent Characteristics of Agar Phantom for Hyperthermia Therapy (온열종양치료 한천 팬텀의 조직등가 특성 분석)

  • Jeong-Geun Park;Kyeong-Hwan Jeong;Jeong-Min Seo
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.6
    • /
    • pp.985-991
    • /
    • 2023
  • A tissue-equivalent phantom is necessary for quality control of hyperthermia therapy. However, since there is no phantom for this purpose, phantoms made from agar are being used in various studies. The tissue-equivalent properties of the agar phantom were confirmed by comparison with the tissue-equivalent material bolus in this study. CT images of the agar phantom and bolus were acquired, and tissue equivalent characteristics were analyzed with image analysis and dose calculation using a computerized radiation therapy planning system. The average pixel value was 96.960±10.999 in bolus, 108.559±8.233 in 3% agar phantom, and 111.844±8.651 in 4% agar phantom. Using the SSD technique, 100 cGy was prescribed at a depth of 1.5 cm and 6 MV X -ray was set to irradiated to 10x10 cm2, and the absorbed dose according to depth was calculated from the central axis of the beam. The intraclass correlation coefficient of dose distribution of bolus, 3% agar phantom, and 4% agar phantom was 0.979 (p<.001, 95%CI .957-.991). The density (g/cm3) at the point where the absorbed dose was calculated was 0.990±0.020 at the bolus, 1.018±0.020 at the 3% agar phantom, and 1.035±0.024 at the 4% agar phantom. In this study, the internal density distribution and uniformity of the agar phantom were confirmed to be appropriate as a tissue equivalent material by analysis of CT images and a computerized radiation therapy planning system.

Comparison Analysis of Patient Specific Quality Assurance Results using portal dose image prediction and Anisotropic analytical algorithm (Portal dose image prediction과 anisotropic analytical algorithm을 사용한 환자 특이적 정도관리 결과 비교 분석)

  • BEOMSEOK AHN;BOGYOUM KIM;JEHEE LEE
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.35
    • /
    • pp.15-21
    • /
    • 2023
  • Purpose: The purpose of this study is to compare the performance of the anisotropic analytical algorithm (AAA) and portal dose image prediction (PDIP) for patient-specific quality assurance based on electronic portal imaging device, and to evaluate the clinical feasibility of portal dosimetry using AAA. Subjects and methods: We retrospectively selected a total of 32 patients, including 15 lung cancer patients and 17 liver cancer patients. Verification plans were generated using PDIP and AAA. We obtained gamma passing rates by comparing the calculated distribution with the measured distribution and obtained MLC positional difference values. Results: The mean gamma passing rate for lung cancer patients was 99.5% ± 1.1% for 3%/3 mm using PDIP and 90.6% ± 5.8% for 1%/1 mm. Using AAA, the mean gamma passing rate was 98.9% ± 1.7% for 3%/3 mm and 87.8% ± 5.2% for 1%/1 mm. The mean gamma passing rate for liver cancer patients was 99.9% ± 0.3% for 3%/3 mm using PDIP and 96.6% ± 4.6% for 1%/1 mm. Using AAA, the mean gamma passing rate was 99.6% ± 0.5% for 3%/3 mm and 89.5% ± 6.4% for 1%/1 mm. The MLC positional difference was small at 0.013 mm ± 0.002 mm and showed no correlation with the gamma passing rate. Conclusion: The AAA algorithm can be clinically used as a portal dosimetry calculation algorithm for patientspecific quality assurance based on electronic portal imaging device.

  • PDF

Comparison of Supply Costs, Contamination Rates and Convenience between Dopamine Premixed and Prefilled Systems (Dopamine Premixed System과 Prefilled System사용에 대한 경제성, 오염률, 사용편리성의 비교연구)

  • Oh, Yun Kyoung;Min, Myungh Sook;In, Yang Won;Choi, Kyung Eob;Sung, Young Hee;Cho, Young Ae;Oui, Mi Sook;Bok, Hae Sook;Suh, Gee Young
    • Korean Journal of Clinical Pharmacy
    • /
    • v.13 no.2
    • /
    • pp.82-90
    • /
    • 2003
  • Dopamine is an effective pressor for the treatment of shock and hypotension when patients do not respond to plasma volume expansion. Two dopamine intravenous delivery systems are currently available in Korea. The objective of this study was to compare dopamine premixed with prefilled system in terms of supply costs (preparation costs + personnel time), contamination rates and convenience. Time-and-motion studies were conducted to determine the time and costs associated with preparation and administration of the two systems. They were analyzed and compared by Mann-Whitney test. To evaluate the contaminaton rates of the two systems, both systems were prepared in an open environment similar to that of practical situations. Premixed and compounded solutions were then filtered by $0.22{\mu}m$ membrane filters, which were cultured at $37^{\circ}C$ for 10 days and their contents were visually checked for bacterial contamination. The convenience of the two systems was compared by itemized user assessments on preparation, dose calculation, admixture, administration and disposal of waste matters. They were analyzed by Wilcoxon's signed rank test and 100 part percentage. It was found that the preparation costs $(mean{\pm}SD)$ for premixed and prefilled systems were $271.70\pm293.55\;Won$ (Korean currency) and $1521.04\pm510.63\;Won$, respectively. The preparation time $(mean{\pm}SD)$ for premixed system was $68.10\pm35.69\;sec.$ while at for prefilled system was $154.03\pm50.06\;sec.$ (n=59 each, p<0.001). No bacterium was observed in the samples of both systems (n=20, each). User assessments indicated that the premixed system was more convenient than the prefilled system except for the item of dose calculation (n=24, p<0.001). Subjective evaluations have proven that the use of the dopamine premixed system resulted in increased efficiency of intravenous preparation by allowing personnel to devote more time to other labor-intensive duties and lower total medical costs.

  • PDF

A Study of Heterogeneity Corrections for Radiation Treatment Planning (방사선 치료계획 시 불균질 보정에 관한 고찰)

  • Lee, Je-Hee;Kim, Bo-Gyum;Park, Heung-Deuk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.18 no.2
    • /
    • pp.89-96
    • /
    • 2006
  • Purpose: To study effectiveness of heterogeneity correction of internal-body inhomogeneities and patient positioning immobilizers in dose calculation, using images obtained from CT-Simulator. Materials and Methods: A water phantom($250{\times}250{\times}250mm^3$) was fabricated and, to simulate various inhomogeneity, 1) bone 2) metal 3) contrast media 4) immobilization devices(Head holder/pillow/Vac-lok) were inserted in it. And then, CT scans were peformed. The CT-images were input to Radiation Treatment Planning System(RTPS) and the MUs, to give 100 cGy at 10 cm depth with isocentric standard setup(Field Size=$10{\times}10cm^2$, SAD=100 cm), were calculated for various energies(4, 6, 10 MV X-ray). The calculated MUs based on various CT-images of inhomogeneities were compared and analyzed. Results: Heterogeneity correction factors were compared for different materials. The correction factors were $2.7{\sim}5.3%$ for bone, $2.7{\sim}3.8%$ for metal materials, $0.9{\sim}2.3%$ for contrast media, $0.9{\sim}2.3%$ for Head-holder, $3.5{\sim}6.9%$ for Head holder+pillow, and $0.9{\sim}1.5%$ for Vac-lok. Conclusion: It is revealed that the heterogeneity correction factor calculated from internal-body inhomogeneities have various values and have no consistency. and with increasing number of beam ports, the differences can be reduced to under 1%, so, it can be disregarded. On the other hand, heterogeneity correction from immobilizers must be regarded enough to minimize inaccuracy of dose calculation.

  • PDF

Monte Carlo Algorithm-Based Dosimetric Comparison between Commissioning Beam Data across Two Elekta Linear Accelerators with AgilityTM MLC System

  • Geum Bong Yu;Chang Heon Choi;Jung-in Kim;Jin Dong Cho;Euntaek Yoon;Hyung Jin Choun;Jihye Choi;Soyeon Kim;Yongsik Kim;Do Hoon Oh;Hwajung Lee;Lee Yoo;Minsoo Chun
    • Progress in Medical Physics
    • /
    • v.33 no.4
    • /
    • pp.150-157
    • /
    • 2022
  • Purpose: Elekta synergy® was commissioned in the Seoul National University Veterinary Medical Teaching Hospital. Recently, Chung-Ang University Gwang Myeong Hospital commissioned Elekta Versa HDTM. The beam characteristics of both machines are similar because of the same AgilityTM MLC Model. We compared measured beam data calculated using the Elekta treatment planning system, Monaco®, for each institute. Methods: Beam of the commissioning Elekta linear accelerator were measured in two independent institutes. After installing the beam model based on the measured beam data into the Monaco®, Monte Carlo (MC) simulation data were generated, mimicking the beam data in a virtual water phantom. Measured beam data were compared with the calculated data, and their similarity was quantitatively evaluated by the gamma analysis. Results: We compared the percent depth dose (PDD) and off-axis profiles of 6 MV photon and 6 MeV electron beams with MC calculation. With a 3%/3 mm gamma criterion, the photon PDD and profiles showed 100% gamma passing rates except for one inplane profile at 10 cm depth from VMTH. Gamma analysis of the measured photon beam off-axis profiles between the two institutes showed 100% agreement. The electron beams also indicated 100% agreement in PDD distributions. However, the gamma passing rates of the off-axis profiles were 91%-100% with a 3%/3 mm gamma criterion. Conclusions: The beam and their comparison with MC calculation for each institute showed good performance. Although the measuring tools were orthogonal, no significant difference was found.