• Title/Summary/Keyword: Dose Calculation

Search Result 527, Processing Time 0.027 seconds

Practical Output Dosimetry with Undefined $N_{dw}{^{Co-60}}$ of Cylindrical Ionization Chamber for High Energy Photon Beams of Linear Accelerator ($N_{dw}{^{Co-60}}$이 정의되지 않은 원통형 이온전리함을 이용한 고에너지 광자선의 임상적 출력선량 결정)

  • Oh, Young-Kee;Choi, Tae-Jin;Song, Ju-Young
    • Progress in Medical Physics
    • /
    • v.23 no.2
    • /
    • pp.114-122
    • /
    • 2012
  • For the determination of absorbed dose to water from a linear accelerator photon beams, it needs a exposure calibration factor $N_x$ or air kerma calibration factor $N_k$ of air ionization chamber. We used the exposure calibration factor $N_x$ to find the absorbed dose calibration factors of water in a reference source through the TG-21 and TRS-277 protocol. TG-21 used for determine the absorbed dose in accuracy, but it required complex calculations including the chamber dependent factors. The authors obtained the absorbed dose calibration factor $N_{dw}{^{Co-60}}$ for reduce the complex calculations with unknown $N_{dw}$ only with $N_x$ or $N_k$ calibration factor in a TM31010 (S/N 1055, 1057) ionization chambers. The results showed the uncertainty of calculated $N_{dw}$ of IC-15 which was known the $N_x$ and $N_{dw}$ is within -0.6% in TG-21, but 1.0% in TRS-277. and TM31010 was compared the $N_{dw}$ of SSDL to that of PSDL as shown the 0.4%, -2.8% uncertainty, respectively. The authors experimented with good agreement the calculated $N_{dw}$ is reliable for cross check the discrepancy of the calibration factor with unknown that of TM31010 and IC-15 chamber.

A Feasibility study on the Simplified Two Source Model for Relative Electron Output Factor of Irregular Block Shape (단순화 이선원 모델을 이용한 전자선 선량율 계산 알고리듬에 관한 예비적 연구)

  • 고영은;이병용;조병철;안승도;김종훈;이상욱;최은경
    • Progress in Medical Physics
    • /
    • v.13 no.1
    • /
    • pp.21-26
    • /
    • 2002
  • A practical calculation algorithm which calculates the relative output factor(ROF) for irregular shaped electron field has been developed and evaluated the accuracy of the algorithm. The algorithm adapted two-source model, which assumes that the electron dose can be express as sum of the primary source component and the scattered component from the shielding block. Original two-source model has been modified in order to make the algorithm simpler and to reduce the number of parameters needed in the calculation, while the calculation error remains within clinical tolerance range. The primary source is assumed to have Gaussian distribution, while the scattered component follows the inverse square law. Depth and angular dependency of the primary and the scattered are ignored ROF can be calculated with three parameters such as, the effective source distance, the variance of primary source, and the scattering power of the block. The coefficients are obtained from the square shaped-block measurements and the algorithm is confirmed from the rectangular or irregular shaped-fields used in the clinic. The results showed less than 1.0 % difference between the calculation and measurements for most cases. None of cases which have bigger than 2.1 % have been found. By improving the algorithm for the aperture region which shows the largest error, the algorithm could be practically used in the clinic, since one can acquire the 1011 parameter's with minimum measurements(5∼6 measurements per cones) and generates accurate results within the clinically acceptable range.

  • PDF

Factors affecting on Perceived Medication Administration Competence in Senior Nursing Students (졸업 예정 간호대학생의 주관적 투약수행역량 영향요인)

  • Kim, Jeong-Hee;Kang, Kyung-Ja
    • Journal of Digital Convergence
    • /
    • v.17 no.7
    • /
    • pp.215-224
    • /
    • 2019
  • The objective of study was to identify perceived medication administration Competence of senior nursing students. A total of 128 students were recruited. The instruments for this study were self-efficacy for drug dosage calculation, anxiety for drug dosage calculation and perceived medication administration competence. The data were collected from November 2018 to January 2019, analyzed by descriptive analysis, chi-square, t-test, Scheffe test, correlation coefficients, and multiple regression using the SPSS 25.0 program. The main predictors of perceived medication administration competence were identified as confidence in drug dosage calculation (${\beta}=.463$, p<.001), Attitude of participation at clinical practice (${\beta}=.168$, p=.040). These two factors explained about 29% of variance in perceived medication administration competence (F=26.93, p<.001). It can contribute to improve their ability to administrate medication in practice, with the accuracy of prescription, recalculation of prescribed drug dose, and observation of adverse reactions in clinical practice and simulation with collaborative approach.

Evaluation of 3DVH Software for the Patient Dose Analysis in TomoTherapy (토모테라피 환자 치료 선량 분석을 위한 3DVH 프로그램 평가)

  • Song, Ju-Young;Kim, Yong-Hyeob;Jeong, Jae-Uk;Yoon, Mee Sun;Ahn, Sung-Ja;Chung, Woong-Ki;Nam, Taek-Keun
    • Progress in Medical Physics
    • /
    • v.26 no.4
    • /
    • pp.201-207
    • /
    • 2015
  • The new function of 3DVH software for dose calculation inside the patient undergoing TomoTherapy treatment by applying the measured data obtained by ArcCHECK was recently released. In this study, the dosimetric accuracy of 3DVH for the TomoTherapy DQA process was evaluated by the comparison of measured dose distribution with the dose calculated using 3DVH. The 2D diode detector array MapCHECK phantom was used for the TomoTherapy planning of virtual patient and for the measurement of the compared dose. The average pass rate of gamma evaluation between the measured dose in the MapCHECK phantom and the recalculated dose in 3DVH was $92.6{\pm}3.5%$, and the error was greater than the average pass rate, $99.0{\pm}1.2%$, in the gamma evaluation results with the dose calculated in TomoTherapy planning system. The error was also greater than that in the gamma evaluation results in the RapidArc analysis, which showed the average pass rate of $99.3{\pm}0.9%$. The evaluated accuracy of 3DVH software for TomoTherapy DQA process in this study seemed to have some uncertainty for the clinical use. It is recommended to perform a proper analysis before using the 3DVH software for dose recalculation of the patient in the TomoTherapy DQA process considering the initial application stage in clinical use.

Image-based Absorbed Dosimetry of Radioisotope (영상기반 방사성동위원소 흡수선량 평가)

  • Park, Yong Sung;Lee, Yong Jin;Kim, Wook;Ji, Young Hoon;Kim, Kum Bae;Kang, Joo Hyun;Lim, Sang Moo;Woo, Sang-Keun
    • Progress in Medical Physics
    • /
    • v.27 no.2
    • /
    • pp.86-92
    • /
    • 2016
  • An absorbed dose calculation method using a digital phantom is implemented in normal organs. This method cannot be employed for calculating the absorbed dose of tumor. In this study, we measure the S-value for calculating the absorbed dose of each organ and tumor. We inject a radioisotope into a torso phantom and perform Monte Carlo simulation based on the CT data. The torso phantom has lung, liver, spinal, cylinder, and tumor simulated using a spherical phantom. The radioactivity of the actual absorbed dose is measured using the injected dose of the radioisotope, which is Cu-64 73.85 MBq, and detected using a glass dosimeter in the torso phantom. To perform the Monte Carlo simulation, the information on each organ and tumor acquired using the PET/CT and CT data provides anatomical information. The anatomical information is offered above mean value and manually segmented for each organ and tumor. The residence time of the radioisotope in each organ and tumor is calculated using the time activity curve of Cu-64 radioactivity. The S-values of each organ and tumor are calculated based on the Monte Carlo simulation data using the spatial coordinate, voxel size, and density information. The absorbed dose is evaluated using that obtained through the Monte Carlo simulation and the S-value and the residence time in each organ and tumor. The absorbed dose in liver, tumor1, and tumor2 is 4.52E-02, 4.61E-02, and 5.98E-02 mGy/MBq, respectively. The difference in the absorbed dose measured using the glass dosimeter and that obtained through the Monte Carlo simulation data is within 12.3%. The result of this study is that the absorbed dose obtained using an image can evaluate each difference region and size of a region of interest.

Tissue Inhomogeneity Correction in Clinical Application of Transmission Dosimetry to Head and Neck Cancer Radiation Treatment (두경부 방사선 치료 환자에서 투과선량 알고리즘의 임상 적용시 불균질 조직 보정에 관한 연구)

  • Kim Suzy;Ha Sung Whan;Wu Hong Gyun;Huh Soon Nyung
    • Radiation Oncology Journal
    • /
    • v.22 no.2
    • /
    • pp.155-163
    • /
    • 2004
  • Purpose : To confirm the reproducibility of in vivo transmission dosimetry system and the accuracy of the a1gorithms for the estimation of transmission dose in head and neck radiation therapy patients. Materials and Methods : From September 5 to 18, 2001, transmission dose measurements were peformed when radiotherapy was given to brain or head and neck cancer patients. The data of 35 patients who were treated more than three times and whose central axis of the beam was not blocked were analyzed in this study. To confirm the reproducibility of this system, transmission dose was measured before dally treatment and then repetitively every hour during the treatment time, with a field size of 10$\times$10 cm$^{2}$ and a delivery of 100 MU. The accuracy of the transmission dose calculation algorithms was confirmed by comparing estimated dose with measured dose. To accurately estimate transmission dose, tissue inhomogeneity correction was done. Results : The measurement variations during a day were within $\pm$0.5$\%$ and the dally variations in the checked period were within $\pm$ 1.0$\%$, which were acceptable for system reproducibility. The mean errors between estimated and measured doses were within $\pm$5.0$\%$ in Patients treated to the brain, $\pm$2.5$\%$ in head, and $\pm$ 5.0%$\%$in neck. Conclusion : The results of this study confirmed the reproducibility of our system and its usefulness and accuracy for dally treatment. We also found that tissue inhomogeneity correction was necessary for the accurate estimation of transmission dose in patients treated to the head and neck.

Comparison of Anisotropic Analytic Algorithm Plan and Acuros XB Plan for Lung Stereotactic Ablative Radiotherapy Using Flattening Filter-Free Beams (비편평화여과기 빔을 이용한 폐 정위절제방사선치료를 위한 AAA와 Acuros XB 계산 알고리즘의 치료계획 비교)

  • Chung, Jin-Beom;Eom, Keun-Yong;Kim, In-Ah;Kim, Jae-Sung;Lee, Jeong-Woo;Hong, Semie;Kim, Yon-Lae;Park, Byung-Moon;Kang, Sang-Won;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.25 no.4
    • /
    • pp.210-217
    • /
    • 2014
  • This study investigated the dosimetric effects of different dose calculation algorithm for lung stereotactic ablative radiotherapy (SABR) using flattening filter-free (FFF) beams. A total of 10 patients with lung cancer who were treated with SABR were evaluated. All treatment plans were created using an Acuros XB (AXB) of an Eclipse treatment planning system. An additional plans for comparison of different alagorithm recalcuated with anisotropic analytic algorithm (AAA) algorithm. To address both algorithms, the cumulative dose-volume histogram (DVH) was analyzed for the planning target volume (PTV) and organs at risk (OARs). Technical parameters, such as the computation times and total monitor units (MUs), were also evaluated. A comparison analysis of DVHs from these plans revealed the PTV for AXB estimated a higher maximum dose (5.2%) and lower minimum dose (4.2%) than that of the AAA. The highest dose difference observed 7.06% for the PTV $V_{105%}$. The maximum dose to the lung was also slightly larger in the AXB plans. The percentate volumes of the ipsilateral lung ($V_5$, $V_{10}$, $V_{20}$) receiving 5, 10, and 20 Gy were also larger in AXB plans than for AAA plans. However, these parameters were comparable between both AAA and AXB plans for the contralateral lung. The differences of the maximum dose for the spinal cord and heart were also small. The computation time of AXB plans was 13.7% shorter than that of AAA plans. The average MUs were 3.47% larger for AXB plans than for AAA plans. The results of this study suggest that AXB algorithm can provide advantages such as accurate dose calculations and reduced computation time in lung SABR plan using FFF beams, especially for volumetric modulated arc therapy technique.

Comparing the dosimetric impact of fiducial marker according to density override method : Planning study (양성자 치료계획에서 fiducial marker의 density override 방법에 따른 선량변화 비교 : Planning study)

  • Sung, Doo Young;Park, Seyjoon;Park, Ji Hyun;Park, Yong Chul;Park, Hee Chul;Choi, Byoung Ki
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.1
    • /
    • pp.19-26
    • /
    • 2017
  • Purpose: The application of density override is very important to minimize dose calculation errors by fiducial markers of metal material in proton treatment plan. However, density override with actual material of the fiducial marker could make problem such as inaccurate target contouring and compensator fabrication. Therefore, we perform density override with surrounding material instead of actual material and we intend to evaluate the usefulness of density override with surrounding material of the fiducial marker by analyzing the dose distribution according to the position, material of the fiducial marker and number of beams. Materials and Method: We supposed that the fiducial marker of gold, steel, titanium is located in 1.5, 2.5, 4.0, 6.0 cm from the proton beam's end of range using water phantom. Treatment plans were created by applying density override with the surrounding material and actual material of the fiducial marker. Also, a liver cancer patient who received proton therapy was selected. We located the fiducial marker of gold, steel, titanium in 0, 1.5, 3.5 cm from the proton beam's end of range and the treatment plans were created by same method with water phantom. Homogeneity Index(HI), Conformity Index(CI) and maximum dose of Organ At Risk(OAR) in Planning Target Volume(PTV) as the evaluation index were compared according to the material, position of the fiducial marker and number of beam. Results: The HI value was more decreased when density override with surrounding material of the fiducial marker was performed comparing with density override with actual material. Especially the HI value was increased when the fiducial marker was located farther from the proton beam's end of the range for a single beam and the fiducial marker's position was closer to isocenter for two or more beams. The CI value was close to 1 and OAR maximum dose was greatly reduced when density override with surrounding material of the fiducial marker was performed comparing with density override with actual material. Conclusion: Density override with surrounding material can be expected to achieve more precise proton therapy than density override with actual material of the fiducial marker and could increase the dose uniformity and target coverage and reduce the dose to surrounding normal tissues for the small fiducial markers used in clinical practice. Most of all, it is desirable to plan the treatment by avoiding the fiducial marker of metal material as much as possible. However, if the fiducial marker have on the beam path, density override of the surrounding material can be expected to achieve more precise proton therapy.

  • PDF

A Study on Superficial Dose of 6MV-FFF in HalcyonTM LINAC: Phantom Study (HalcyonTM 선형가속기 6MV-FFF 에너지의 표재 선량에 대한 고찰: Phantom Study)

  • Choi, Seong Hoon;Um, Ki Cheon;Yoo, Soon Mi;Park, Je Wan;Song, Heung Kwon;Yoon, In Ha
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.32
    • /
    • pp.31-39
    • /
    • 2020
  • Purpose: The aims of this study were to compare the superficial dose with Optically Stimulated Luminescence Dosimeter(OSLD) measurement and Treatment Planning System(TPS) calculation for 6MV-Flattening Filter Free(FFF) energy using HalcyonTM and TrueBeamTM. Materials and methods: Phantom study was performed using the CT images of human phantom. In the treatment planning system, the Planning Target Volume(PTV) was contoured which is similar to Glottic cancer. Furthermore, Point(M), Point(R), and Point(L) were contoured at the iso-center of head and neck region and 5mm bolus was applied to the body contour. Each treatment plans using 6MV-FFF energy from HalcyonTM and TrueBeamTM with static Intensity Modulated Radiation Therapy(IMRT) and Volumetric Modulated Arc Therapy(VMAT) were established with eclipse. To reproduce the same position as the TPS, OSLDs were placed at the iso-center point and 5mm bolus was applied to compare the error rate after the dose delivery. Result: The results of the study using human phantom are as follows. In case of HalcyonTM, the mean absolute error rates of the point dose using the treatment planning system and the dose measured by OSLD were 1.7%±1.2% for VMAT and 4.0±2.8% for IMRT. Also TrueBeamTM was identified as 2.4±0.4% and 8.6±1.8% respectively for VMAT and IMRT. Conclusion: Through the results of this study, TrueBeamTM confirmed that the average error rate was 2.4 times higher for VMAT and 3.6 times higher for IMRT than HalcyonTM. Therefore, based on the results of this study, If we need a more accurate dose assessment for the superficial dose, It is expected that using HalcyonTM would be better than TrueBeamTM.

Clinical Application of the Dual Energy Photon Beam Using 6 MV and 10 MV X-ray (6MV 및 10 MV X-ray의 이중에너지를 생성하는 방사선 발생장치의 임상적 이용)

  • Lee, Myung-Za;Han, Hye-Gyeong
    • Radiation Oncology Journal
    • /
    • v.6 no.1
    • /
    • pp.93-99
    • /
    • 1988
  • Some modern accerelators provide a dual energy for photon beam treatment. The main advantages of dual energy in the treatment of rectosigmoid or rectal cancer are as fellows. 1. Dose in the critical organ such as small intestine, bladder and genital organ are reduced. 2. Presacral and perineal area is fully covered. Dose distribution analysis such as calculation of dose in a target volume, isocenter, $D_{nax}$ and dose spectrum in any region of interest are possible. Examples of plan are given and results are discussed.

  • PDF