• 제목/요약/키워드: Dose Calculation

검색결과 522건 처리시간 0.023초

화산재에 의한 수용액의 납 이온 흡착특성 (Adsorption characteristics of lead ion in aqueous solution by volcanic ash)

  • 김미연;소명기;김영관
    • 상하수도학회지
    • /
    • 제25권3호
    • /
    • pp.359-366
    • /
    • 2011
  • The feasibility of using volcanic ash for lead ion removal from wastewater was evaluated. The adsorption experiments were carried out in batch tests using volcanic ash that was treated with either NaOH or HCl prior to the use. Volcanic ash dose, temperature and initial Pb(II) concentration were chosen as 3 operational variables for a $2^3$ factorial design. Ash dose and concentration were found to be significant factors affecting Pb(II) adsorption. The removal of Pb(II) was enhanced with increasing volcanic ash dose and with decreasing the initial Pb(II) concentration. Pb(II) adsorption on the volcanic ash surface was spontaneous reaction and favored at high temperatures. Calculation of Gibb's free energy indicated that the adsorption was endothermic reaction. The equilibrium parameters were determined by fitting the Langmuir and Freundlich isotherms, and Langmuir model better fitted to the data than Freundlich model. BTV(base-treated volcanic ash) showed the maximum adsorption capacity($Q_{max}$) of 47.39mg/g. A pseudo second-order kinetic model was fitted to the data and the calculated $q_e$ values from the kinetic model were found close to the values obtained from the equilibrium experiments. The results of this study provided useful information about the adsorption characteristics of volcanic ash for Pb(II) removal from aqueous solution.

부정형 조사면에서의 TLD를 이용한 방사선 흡수선량 측정 (Dosimetry of Irregular Field Using Thermoluminescence Dosimetry)

  • 이종영;박경란;김계준
    • Radiation Oncology Journal
    • /
    • 제12권2호
    • /
    • pp.263-267
    • /
    • 1994
  • In clinical radiotherapy, the use of wide and irregular field techniques frequently results in considerable tumor dose inhomogeneity because of, the variation in physical characteristics of irradiated volumes. This report describes an analysis of the dosimetry of the irregular fields such as radiation fields for Hodgkin's disease(mantle field), esophageal cancer, and lung cancer when a 6 MV and a 15 MV linear accelerators are utilized. Doses were measured in a Rando phantom using methods of thermoluminescence dosimetry(TLD), and were calculated by radiotherapy planning computer system with the Clarkson's method for calculation of a irregular field. A dose variation of $5-22\%,\;6-9\%,\;6-14\%$ were found in the mantle field, esophageal cancer field, lung cancer field respectively. Higher doses occurred in the superior portion of the irregular field. The sites of maximum dose variation were the supraclavicular and the upper spinal cord region. To adjust for these substantial differences, a compensator or a shrinking field technique should be adopted.

  • PDF

차폐체 두께에 따른 정지궤도위성용 반도체의 우주방사선 피폭 계산 (A Calculation of the Cosmic Radiation Dose of a Semiconductor in a Geostationary Orbit Satellite Depending on the Shield Thickness)

  • 허정환;고봉진;정범진
    • 한국전기전자재료학회논문지
    • /
    • 제22권6호
    • /
    • pp.476-483
    • /
    • 2009
  • Cosmic ray is composed of nuclear particles moving at a light speed. The cosmic ray affects the performance and the reliability of semiconductor devices by ionizing the semiconductor material. In this study, the radiation effects of protons, electrons, and photons, which compose the cosmic ray, on the GOS(Geostationary Orbit Satellite) were evaluated using the Monte-Carlo N-Particle code. The GOS was chosen due to the comparatively long exposure to the cosmic ray as it stays in the geostationary orbit more than 10 years. As the absorbed dose of semiconductor from electrons is much larger than those of protons, photons, and the secondary radiation, most of the radiation exposure of the semiconductors in the GOS results from that of electrons. When we compare the calculated absorbed dose with the radio-resistance of semiconductor, the Intel 486 of the Intel company is not suitable for the GOS applications due to its low radio-resistance. However RH3000-20 of MIPS and Motorola 602/603e can be applied to the Satellite when the aluminium shield is thicker than 3 mm.

DOT4.2-QAD-CG 접속법을 이용한 CANDU 6 발전소 차폐 계통에 대한 방사선 차폐 계산 (Radiation Shielding Calculation on Shield System of CANDU 6 Plant Using the Coupled DOT4.2 and QAD-CG Codes)

  • Kim, Kyo-Youn;Kim, Jong-Kyung
    • Nuclear Engineering and Technology
    • /
    • 제25권4호
    • /
    • pp.561-569
    • /
    • 1993
  • CANDU 6 발전소의 측면 및 하단 차폐 구조에서의 방사선 선량율을 해석하기 위하여 DOT4.2-QAD-CG 접속 방법을 이용한 평가 방법이 시도되었다. 평가 결과에 의하면 주 출입구 및 신연료 장전 구역에서의 평균 방사선 선량율은 설계 목표치인. 약 6 $\mu$Sv/h 정도로 나타났으며, 또한 이러한 평가 결과는 CANDU 6 발전소에서의 실측지와도 잘 일치하고 있음을 확인할 수 있었다. 따라서, 본 논문에서 사용된 평가법은 앞으로 건설 될 CANDU 6 원자로인 월성 2, 3 및 4호기의 방사선 차폐해석에도 이용될 수 있을 것이다.

  • PDF

고선량 Ir-192선원 교정기의 제작 및 특성 (High Dose Rate Ir-192 Source Calibration Method with Newly Designed Calibration Jig)

  • 이병용;최은경;장혜숙
    • Radiation Oncology Journal
    • /
    • 제7권2호
    • /
    • pp.299-303
    • /
    • 1989
  • Authors have developed highly reproducible calibration method for the Micro-Selectron HDR Ir-192 system (Nucletron, Motherland). The new jig has a 10cm radius circular hole in the $30cm{\times}30cm{\times}0.2cm$ acrylic plate, and 5F flexible bronchial tubes are attached around the hole. The source moves along the circle in the tubes and the ionization chamber is placed verticaly at the center of the circular hole (center of the jig). Dose distribution near the center was derived theoretically, and measured with the film dosimetry system. Theoretical calculation and measurement show the error margin below $0.1\%$ for 1mm or 2mm position deviation. We have measured at 12 and 24 points of circle with 1, 6, 11 and 21 second dwell time of source in order to calculate the activity of the source. Measurements have been repeated daily for 50 days. The accuracy and the reproducibility are below $1\%$ error margin. The half life of the source from our measurement is estimated $73.4\pm0.4$ days.

  • PDF

Development of a reference framework to assess stylized human intrusion scenarios using GENII Version 2 considering design features of planned near-surface disposal facility in Korea

  • Kwon, Ki Nam;Cheong, Jae Hak
    • Nuclear Engineering and Technology
    • /
    • 제51권6호
    • /
    • pp.1561-1574
    • /
    • 2019
  • A standard form of six stylized human intrusion scenarios for a near-surface disposal facility (e.g. the planned Korean repository, Gyeongju Phase II) is proposed through re-categorization of totally thirty-one past cases reported in public literature. A reference assessment framework for inadvertent human intrusion is newly developed using GENII Version 2 conforming to the ICRP Publication 60 and thereafter. Calculated dose from the assessment framework is verified by comparing with hand calculation results for simplified model equations independently derived. Results from GENII Version 2 and 1.485 show inevitable differences, which is mainly attributed to the difference in the external dose assessment model. If intake dose coefficients in GENII Version 1.485 are modified, the difference can be reduced but still exist to an extent. Through deterministic and probabilistic sensitivity analysis, most affecting four parameters are derived and uncertainties of the parameters are quantified. It is expected that the reference assessment framework together with representative stylized scenarios can be used to do a human intrusion impact assessment for a specific repository using site-specific information. Especially, the past practice of human intrusion impact assessment using GENII Version 1.485 with or without modification may be replaced with the new assessment framework developed in this study.

Assessing Commercial CLEANBOLUS Based on Silicone for Clinical Use

  • Son, Jaeman;Jung, Seongmoon;Park, Jong Min;Choi, Chang Heon;Kim, Jung-in
    • 한국의학물리학회지:의학물리
    • /
    • 제32권4호
    • /
    • pp.159-164
    • /
    • 2021
  • Purpose: We investigated the properties of CLEANBOLUS based on silicone with suitable characteristics for clinical use. Methods: We evaluated the characteristics of CLEANBOLUS and compared the results with the commercial product (Super-Flex bolus). Also, we conducted physical evaluations, including shore hardness, element composition, and elongation break. Transparency was investigated through the measured absorbance within the visible region (400-700 nm). Also, dosimetric characteristics were investigated with surface dose and beam quality. Finally, the volume of unwanted air gap was investigated based on computed tomography images for breast, chin, and nose using Super-Flex bolus and CELANBOLUS. Results: CLEANBOLUS showed excellent physical properties for a low shore hardness (000-35) and elongation break (>1,000%). Additionally, it was shown that CLEANBOLUS is more transparent than Super-Flex bolus. Dosimetric results obtained through measurement and calculation have an electron density similar to water in CLEANBOLUS. Finally, CLEANBOLUS showed that the volume of unwanted air gap between the phantom and each bolus is smaller than Super-Flex bolus for breast, chin, and nose. Conclusions: The physical properties of CLEANBOLUS, including excellent adhesive strength and lower shore hardness, reduce unwanted air gaps and ensure accurate dose distribution. Therefore, it would be an alternative to other boluses, thus improving clinical use efficiency.

Measurement of the applicability of various experimental materials in a medically relevant reactor neutron source Part One: Material characteristics acting as a carrier for boron compounds during neutron irradiation

  • Ezddin Hutli ;Peter Zagyvai
    • Nuclear Engineering and Technology
    • /
    • 제55권8호
    • /
    • pp.2984-2996
    • /
    • 2023
  • A 100 kW thermal power pool-type light water reactor and Pu(Be) as a fast neutron source were used to determine the appropriate carrier for irradiating boron-containing samples with neutron beams. The tested materials (carriers) were subjected to neutron beams in the reactor's tangential channel. The geometrical arrangement of experimental facilities relative to the neutron beam trajectory, as well as the effect of sample thickness on the count rate, were investigated. The majority of the detectable charged particles emitted by the neutron beam's interaction with tested materials and the detector's detecting layer are protons (recoiled hydrogen) and particles generated in nuclear reactions (protons and alpha particles), respectively. Stopping and Range of Ions in Matter (SRIM) software was used to do theoretical calculations for the range of expected released particles in various materials, including human tissue. The results of measurement and calculation are in good agreement. According to experiments and theoretical calculations, the number of protons emitted by tissue-like materials may commit a dose comparable to that of boron capture reactions. Furthermore, the range of protons is significantly larger than that of alpha particles, which most probably changes dose distribution in healthy cells surrounding the tumor, which is undesirable in the BNCT approach.

ICRP 기준팬텀 기반의 천연방사성핵종이 포함된 가공제품 사용으로 인한 피폭선량 특성 평가 (Characteristic Evaluation of Exposed Dose with NORM added Consumer Product based on ICRP Reference Phantom)

  • 유도현;이현철;신욱근;최현준;민철희
    • Journal of Radiation Protection and Research
    • /
    • 제39권4호
    • /
    • pp.159-167
    • /
    • 2014
  • 국내에서는 2012년 천연방사성핵종이 포함된 가공제품의 규제를 위해 생활주변방사선 안전관리법이 시행되었지만, 해당 가공제품 사용에 대한 인체 피폭선량을 평가할 수 있는 기초자료나 피폭선량 평가기술이 미비하다. 따라서 본 연구는 사용자 피폭선량을 정량적으로 평가하기 위한 방법을 제안하고, 방사선의 종류 및 에너지에 따른 피폭선량 특성의 확인을 목적으로 한다. 피폭선량 평가를 위해서 몬테칼로 방법을 사용한 Monte Carlo N-Particle Extended (MCNPX) 코드를 통해 International Commission on Radiological Protection (ICRP)의 기준팬텀이 전산모사 되었으며, 대표적 천연방사성핵종인 우라늄 계열에서 발생되는 알파선, 베타선, 감마선의 최소, 중간, 최대 에너지가 선원항으로 사용되었다. 연간 유효선량은 가공제품 사용시간 및 사용위치를 고려한 피폭시나리오를 기반으로 평가되었다. 짧은 비정의 알파선 및 베타선은 대부분의 선량을 피부에 전달한 반면, 감마선은 대부분의 장기에 유사한 선량을 전달하였다. 방사능이 $1Bq{\cdot}g^{-1}$ 인 돌침대에 포함된 천연방사성핵종의 함유율이 10%라고 가정하고 한국인 평균 수면시간인 7시간 50분간 돌침대를 사용하였을 때 최대 연간 유효선량은 알파선, 베타선, 감마선에 대해서 각각 0.0222, 0.0836, $0.0101mSv{\cdot}y^{-1}$로 평가되었다.