• Title/Summary/Keyword: Doppler tracking

Search Result 101, Processing Time 0.025 seconds

GPS L5 Signal Tracking Scheme Using GPS L1 Signal Tracking Results (GPS L1 신호추적 결과를 이용한 GPS L5 신호추적 기법)

  • Joo, Inone;Lee, Sanguk
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.3
    • /
    • pp.99-104
    • /
    • 2012
  • The United States will proceed with the effort to modernize the GPS system, and one of its main content is to provide L5 signal. L5 will be transmitted in a radio band reserved exclusively for aviation safety services. And, L5, in combination with L1, will improve the position accuracy via ionospheric correction and robustness via signal redundancy. However, The acquisition processing time of L5 takes longer than that of L1 as the code length of L5 is 10 times longer than that of L1. To reduce this acquisition processing time, a higher number of correlators in the aquisition module should be used. However, there is a problem that this causes increase in the complexity of the correlator configuration and the computation power. So, in this paper, we propose L5 signal tracking scheme using tracking results in the GPS L1/L5 receiver. The proposed scheme could reduce the hardware complexity as the GPS L5 signal acquisition module is not needed, and provide fast and stable tracking of L5 signal by aiding L1 tracking results such as PRN, the code phase synchronization, and the Doppler frequency. The feasibility of the proposed scheme is demonstrated through simulation results.

A Study on the Correlation Results for Fringe Rotation and Delay Tracking of the VCS (VCS의 지연추적과 프린지 회전에 대한 상관결과 고찰)

  • Oh, Se-Jin;Yeom, Jae-Hwan;Roh, Duk-Gyoo;Oh, ChungSik;Jung, Jin-Seung;Chung, Dong-Kyu;Oyama, Tomoaki;Kawaguchi, Noriyuki;Kobayashi, Hideyuki;Kono, Yusuke;Ozeki, Kensuke;Onuki, Hirohumi
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.13 no.4
    • /
    • pp.220-232
    • /
    • 2012
  • In this paper, we investigate the correlation result due to the problems of delay tracking and fringe rotation module in the VCS(VLBI Correlation Subsystem). The VCS, FX-type correlator, adopts the delay tracking and fringe rotation module in order to compensate the delay change and fringe phase of wave signal from the radio source by Doppler's effect. The phase of observed data is also compensated by means of delay tracking and fringe rotation in the correlator, but we confirmed that the phase is unstable by applying long integration period of AIPS(Astronomical Image Processing System) rather than correlator. And the delay value of observed data has the errors of several tens nanoseconds than normal case at the analysis of correlation result. In addition, we found that the phase of correlation results is not connected as the unit of FFT-segment because the initial fringe phase at the fringe rotation module is not correctly determined. In this paper, in order to solve these problems, the original direction of 90 degree phase jump is reversely modified when the bit-shift occurred at the delay tracking. And the initial fringe phase at the fringe rotation module is correctly modified by using the initial phase of observed data. In addition, the parameter calculation module was abnormally operated as designed in the fringe rotation. So, the logical program by the VCS is modified so as to calculate the parameters correctly. Through the experiments of correlation processing over the above problems, the modified proposal algorithm is adequately corrected to the data analysis results, so that the experimental results make it clear for us to operate the developed VCS hardware correlator normally.

Underwater Target Discrimination using Sequential Testings and Data Fusion (순차 검증과 자료융합을 이용한 수중 표적 판별)

  • Kwak, Eun-Joo
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.657-659
    • /
    • 1998
  • In this paper we discuss an algorithm to discriminate a target under track against multiple acoustic counter-measure (ACM) sources, based on sequential testings of multiple hypotheses. The ACM sources are separated from the target under track and generate, while drifting, measurements with false range and Doppler information. The purpose of the ACM is to mislead the target tracking and to help the true target evade a pursuer. The proposed algorithm uses as a test statistic a function of both the sequences of processed waveform signature and the innovation sequences from extended Kalman filters to estimate the target dynamics and the drifting positions of the ACM sources. Numerical experiments on various scenarios show that the proposed algorithm discriminates the target faster with a higher probability of success than the algorithm using only the innovation sequences from extended Kalman filters.

  • PDF

A Basic Study of Water Basin Experiment for Underwater Robot with Improving usability (사용자 운용 편의성을 위한 수중로봇 MR-1의 수조실험에 관한 연구)

  • Nam, Keonseok;Ryu, Jedoo;Ha, Kyoungnam
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.1
    • /
    • pp.32-38
    • /
    • 2020
  • This paper describes a method for tracking attitude and position of underwater robots. Underwater work with underwater robots is subject to differences in work efficiency depending on the skill of the operator and the utilization of additional sensors. Therefore, this study developed an underwater robot that can operate autonomously and maintain a certain attitude when working underwater to reduce difference of work efficiency. The developed underwater robot uses 8 thrusters to control 6 degrees of freedom motion, IMU (Inertial Measurement Unit), DVL (Doppler Velocity Log) and PS (Pressure Sensor) to measure attitude and position. In addition, the thruster allocation algorithm was designed to follow the control desired value using 8 thrusters, and the motion control experiments were performed in the engineering water basin using the thruster allocation method.

Tracking Error Extraction Algorithm in Monopulse Active Homing Radar System

  • Kwon, Jun-Beom;Kim, Do-Hyun;Kim, Lee-Han;Byun, Young-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.158.5-158
    • /
    • 2001
  • Monopulse active homing radar requires velocity and angle information of target to track fast moving target. Target velocity can be estimated by measuring the frequency shift between transmitted and received frequencies. Angle information is obtained by measuring boresight error. Measurement of doppler frequency component in received signal is done through FFT analysis and interpolation algorithm for fine tuning. Boresight errors in azimuth and elevation axes are proportional to the power of each difference channel relative to sum channel. The target signal power in difference channel is estimated more precisely by measuring the power of FFT result cell of maximum ...

  • PDF

Underwater target discrimination using geometry of ACM tracks (음향교란 항적의 기하학적 특성을 이용한 수중 표적 판별)

  • 정영헌;전상운;홍선목
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.3
    • /
    • pp.110-119
    • /
    • 1998
  • In this paper we discuss an algorithm to discriminate a garget under track against multiple acoustic counter-measure (ACM) sources, based on sequential testings of multiple hypotheses. The ACM sources are separated from the target under track and generate, while drifting, measurements with false range and Doppler information. The purpose of the ACM is to mislead the target tracking and to help the true target evade a pursuer. The proposed algorithm uses as a test statistic a function of the innovation sequences from extended Kalman filters to estimate the target dynamics and the drifting positions of the ACM sources. results of numerical experimenats are presented to show a performance profile of the proposed algorithm.

  • PDF

Improved Time Delay Difference Estimation for Target Tracking using Doppler Information (도플러 효과의 보상을 통한 시간지연 차의 추정)

  • 염석원;윤동헌;윤동욱;고한석
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.8
    • /
    • pp.25-33
    • /
    • 1998
  • 본 논문에서는 한 쌍의 센서를 이용하여 미지의 수중 음향 신호의 시간지연의 차 (Time Delay Difference)를 추정하고 탐지하는 알고리즘을 다루고 있다. 전형적인 시간지연 차의 최적화 추정 기법은 두 신호의 상관관계(Cross Correlation)에 의한 ML(Maximum likelihood)추정으로 구할 수 있지만, 실제 수중 음향 환경 하에서 시간 지연뿐만 아니라 표 적의 이동에 의하여 발생하는 도플러 효과로 신호의 주파수도 변하게 된다. 이러한 신호 주 파수의 올바른 고려 없이 단순히 두 신호의 시간지연만을 추정하는 방법은 불가피한 에러를 생성하게 된다. 본 논문에서는 시시각각 변하는 시간지연의 차를 구하기 위한 준 최적화 기 법인 확률분포 함수의 Recursive Filter에 시간 지연 차와 도플러효과의 2차원 확률분포 함 수를 적용한 추정 알고리즘을 제안한다. 관측된 신호의 리샘플링(Resampling)을 통하여 도 플러 효과를 보상한 후 2차원 Conditional likelihood를 구하고 Projection과 Correction 과정 을 통하여 시간지연과 도플러 효과에 대한 사후확률을 구한다. 그리고 이러한 알고리즘을 가상 시나리오에 대한 모의실험을 통하여 평가한다.

  • PDF

Sparse Adaptive Equalizer for ATSC DTV in Fast Fading Channels (고속페이딩 채널 극복을 위한 ATSC DTV용 스파스 적응 등화기)

  • Heo No-Ik;Oh Hae-Sock;Han Dong Seog
    • Journal of Broadcast Engineering
    • /
    • v.10 no.1 s.26
    • /
    • pp.4-13
    • /
    • 2005
  • An equalization algorithm is proposed to guarantee a stable performance in fast fading channels for digital television (DTV) systems from the advanced television system committee (ATSC) standard. In channels with high Doppler shifts, the conventional equalization algorithm shows severe performance degradation. Although the conventional equalizer compensates poor channel conditions to some degree, long filter taps required to overcome long delay profiles are not suitable for fast fading channels. The Proposed sparse equalization algorithm is robust to the multipaths with long delay Profiles as well as fast fading by utilizing channel estimation and equalizer initialization. It can compensate fast fading channels with high Doppler shifts using a filter tap selection technique as well as variable step-sizes. Under the ATSC test channels, the proposed algorithm is analyzed and compared with the conventional equalizer. Although the proposed algorithm uses small number of filter taps compared to the conventional equalizer, it is stable and has the advantages of fast convergence and channel tracking.

Rotating Arm Test for Assessment of an Underwater Hybrid Navigation System for a Semi-Autonomous Underwater Vehicle (반자율무인잠수정의 수중 복합항법 시스템 성능평가를 위한 회전팔 시험)

  • Lee, Chong-Moo;Lee, Pan-Mook;Kim, Sea-Moon;Hong, Seok-Won;Seo, Jae-Won;Seong, Woo-Jae
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.141-148
    • /
    • 2003
  • This paper presents a rotating ann test for assessment of an underwater hybrid navigation system for a semi-autonomous underwater vehicle. The navigation system consists of an inertial measurement unit (IMU), an ultra-short baseline (USBL) acoustic navigation sensor and a doppler velocity log (DVL) accompanying a magnetic compass. The errors of inertial measurement units increase with time due to the bias errors of gyros and accelerometers. A navigational system model is derived to include the error model of the USBL acoustic navigation sensor and the scale effect and bias errors of the DVL, of which the state equation composed of the navigation states and sensor parameters is 25 in the order. The conventional extended Kalman filter was used to propagate the error covariance, update the measurement errors and correct the state equation when the measurements are available. The rotating ann tests are conducted in the Ocean Engineering Basin of KRISO, KORDI to generate circular motion in laboratory, where the USBL system was absent in the basin. The hybrid underwater navigation system shows good tracking performance against the circular planar motion. Additionally this paper checked the effects of the sampling ratio of the navigation system and the possibility of the dead reckoning with the DVL and the magnetic compass to estimate the position of the vehicle.

  • PDF

Accuracy Analysis of Velocity and Water Depth Measurement in the Straight Channel using ADCP (ADCP를 이용한 직선 하천의 유속 및 수심 측정 정확도 분석)

  • Kim, Jongmin;Kim, Dongsu;Son, Geunsoo;Kim, Seojun
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.5
    • /
    • pp.367-377
    • /
    • 2015
  • ADCPs have been highlighted so far for measuring steramflow discharge in terms of their high-order of accuracy, relatively low cost and less field operators driven by their easy in-situ operation. While ADCPs become increasingly dominant in hydrometric area, their actual measurement accuracy for velocity and bathymetry measurement has not been sufficiently validated due to the lack of reliable bench-mark data, and subsequently there are still many uncertain aspects for using ADCPs in the field. This research aimed at analyzing inter-comparison results between ADCP measurements with respect to the detailed ADV measurement in a specified field environment. Overall, 184 ADV points were collected for densely designed grids for the given cross-section that has 6 m of width, 1 m of depth, and 0.7 m/s of averaged mean flow velocity. Concurrently, ADCP fixed-points measurements were conducted for each 0.2m and 0.02m of horizontal and vertical spacing respectively. The inter-comparison results indicated that ADCP matched ADV velocity very accurately for 0.4~0.8 of relative depth (y/h), but noticeable deviation occurred between them in near surface and bottom region. For evaluating the capacity of measuring bathymetry of ADCPs, bottom tracking bathymetry based on oblique beams showed better performance than vertical beam approach, and similar results were shown for fixed and moving-boat method as well. Error analysis for velocity and bathymetry measurements of ADCP can be potentially able to be utilized for the more detailed uncertainty analysis of the ADCP discharge measurement.