• Title/Summary/Keyword: Doppler shift estimation

Search Result 34, Processing Time 0.028 seconds

Underwater mobile communication scheme based on the direct sequence spread spectrum transmission using Doppler estimation and its sea trial results with the pseudo-moving transmission (도플러 추정을 적용한 직접수열 대역확산 전송 기반 수중 이동통신 방법 및 가상 이동신호를 이용한 해상시험 결과)

  • Kim, Seung-Geun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.1
    • /
    • pp.16-29
    • /
    • 2022
  • This paper presents a Doppler shift estimation method and signal processing schemes for Direct Sequence Spread Spectrum (DSSS) transmission to overcome the Doppler shift due to the moving of the underwater communication unit. The proposed method estimates a Doppler shift via 2 step procedures using the preamble with the two 64-length Frank sequences which has a good self-correlation characteristic and is insensitive to the Doppler shift. Furthermore, a packet of DSSS underwater mobile communication and a RAKE receiver are designed using the proposed Doppler shift estimation method. Due to the modulation scheme of the designed DSSS underwater mobile communication using Differential-Quadrature Phase Shift Keying (DQPSK) for the data symbol transmission, the RAKE receiver dose not need a phase tracking and easily makes coherent signals among the combining RAKE branches. The designed RAKE receiving scheme including the proposed Doppler shift estimation method successfully decides information data using the DSSS signal transmitted from the pseudo-moving transmitter with velocity upto about 17.5 m/s.

Estimation of Ocean Current Velocity near Incheon using Radarsat-1 SAR and HF-radar Data

  • Kang, Moon-Kyung;Lee, Hoon-Yol
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.5
    • /
    • pp.421-430
    • /
    • 2007
  • This paper presents the results of the ocean surface current velocity estimation using 6 Radarsat-1 SAR images acquired in west coastal area near Incheon. We extracted the surface velocity from SAR images based on the Doppler shift approach in which the azimuth frequency shift is related to the motion of surface target in the radar direction. The Doppler shift was measured by the difference between the Doppler centroid estimated in the range-compressed, azimuth-frequency domain and the nominal Doppler centroid used during the SAR focusing process. The extracted SAR current velocities were statistically compared with the current velocities from the high frequency(HF) radar in terms of averages, standard deviations, and root mean square errors. The problem of the unreliable nominal Doppler centroid for the estimation of the SAR current velocity was corrected by subtracting the difference of averages between SAR and HF-radar current velocities from the SAR current velocity. The corrected SAR current velocity inherits the average of HF-radar data while maintaining high-resolution nature of the original SAR data.

An Improved Phase Estimation Method for AM Range Measurement System (진폭 변조 거리 측정 시스템에 적용 가능한 개선된 위상 추정 기법)

  • Kim, Dae-Joong;Oh, Taek-Hwan;Hwang, Sun-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.6C
    • /
    • pp.453-461
    • /
    • 2012
  • This paper proposes an improved phase estimation method for AM(Amplitude Modulation) range measurement system. The previous phase estimation method induces errors by Doppler shift of a moving target. The proposed method compensates phase estimation error through the ADC(Adaptive Doppler Correction) to take the Doppler shift, thus can improve distance measurement accuracy. When compared with the previous method through simulation results, the Doppler shift compensation and accuracy are improved by 94.7% and 50%, respectively. Target distance error in an acoustic tank is estimated to be 7.7cm, which confirms that the proposed method can be used to estimate the distance in the marine environment.

Path Loss Model with Multiple-Antenna and Doppler Shift for High Speed Railroad Communication (다중 안테나와 Doppler Shift를 고려한 고속 철도의 경로 손실 모델)

  • Park, Hae-Gyu;Yoon, Kee-Hoo;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.8
    • /
    • pp.437-444
    • /
    • 2014
  • In this paper, we propose a path loss model with the multiple antennas and doppler shift for high speed railroad communication. Path loss model is very important in order to design consider diverse characteristic in high-speed train communication. Currently wireless communication systems use the multiple antennas in order to improve the channel capacity or diversity gain. However, until recently, many researches on path loss model only consider geographical environment between the transmitter and the receiver. There is no study about path loss model considering diversity effect and doppler shift. In order to make average residuals considering doppler shift we use tuned free space path loss model which is utilized for measurement results at high speed railroad. The environment of high speed rail is mostly at viaduct and flatland over than 50 percent. And in order to make average residuals considering multiple antenna we use theoretical estimation of diversity gain with MRC scheme. proposed model predict loss of received signal by estimating average residuals between diversity effect and doppler shift.

Ocean Surface Current Retrieval Using Doppler Centroid of ERS-1 Raw SAR Data

  • Kim Ji-Eun;Kim Duk-jin;Moon Wooil M.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.590-593
    • /
    • 2004
  • Extraction of ocean surface current velocity offers important physical oceanographic parameters especially on understanding ocean environment. Although Remote Sensing techniques were highly developed, the investigation of ocean surface current using Synthetic Aperture Radar (SAR) is not an easy task. This paper presents the results of ocean surface current observation using Doppler Centroid of ERS-1 SAR data obtained off the coast of Korea peninsula. We employed the concept, in which Doppler frequency shift and the ocean surface current are closely related, to evaluate ocean surface current. Moving targets cause Doppler frequency shift of the back scattered radar waves of SAR, thus the line-of-sight velocity component of the scatters can be evaluated. The Doppler frequency shift can be measured by estimating the difference between Doppler Centroid of raw SAR data and reference Doppler Centroid. Theoretically, the Doppler Centroid is zero; however, squinted antenna which is affected by several physical factors causes Doppler Centroid to be nonzero. The reference Doppler Centroid can be obtained from measurements of sensor trajectory, attitude and Earth model. The estimated Doppler Centroid was compensated by considering the accurate attitude estimation of ERS-1 SAR. We could verify the correspondence between the estimated ocean surface current and observed in-situ data in the error bound.

  • PDF

Range estimation of underwater vehicles using superimposed chirp signals (중첩된 처프 신호를 이용한 수중 이동체의 거리 추정)

  • Hyung-in Ra;Kyung-won Lee;Chang-hyun Youn;Ki-man Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.6
    • /
    • pp.511-518
    • /
    • 2023
  • Accurate ranging is one of the key factors in the test and evaluation process of underwater vehicles. In particular, when estimating range using Time of Arrival (ToA) values, signals such as Linear Frequency Modulation (LFM), a chirp signal, are highly applicable due to their correlated nature. However, in a Doppler shift environment with mobility, measurement errors may occur due to the range-Doppler coupling effect. In this paper, we propose a signal that compensates for the distance-Doppler coupling effect to reduce the measurement error of the arrival time value. The proposed signal is constructed by superimposing two types of LFM signals, and the range-Doppler coupling effect can be minimized. Through simulations, it is confirmed that the proposed signal is a way to compensate for the distance-Doppler coupling effect in the distance estimation of underwater mobile bodies, reducing the measurement error of the arrival time value.

Doppler-shift estimation of flat underwater channel using data-aided least-square approach

  • Pan, Weiqiang;Liu, Ping;Chen, Fangjiong;Ji, Fei;Feng, Jing
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.2
    • /
    • pp.426-434
    • /
    • 2015
  • In this paper we proposed a dada-aided Doppler estimation method for underwater acoustic communication. The training sequence is non-dedicate, hence it can be designed for Doppler estimation as well as channel equalization. We assume the channel has been equalized and consider only flat-fading channel. First, based on the training symbols the theoretical received sequence is composed. Next the least square principle is applied to build the objective function, which minimizes the error between the composed and the actual received signal. Then an iterative approach is applied to solve the least square problem. The proposed approach involves an outer loop and inner loop, which resolve the channel gain and Doppler coefficient, respectively. The theoretical performance bound, i.e. the Cramer-Rao Lower Bound (CRLB) of estimation is also derived. Computer simulations results show that the proposed algorithm achieves the CRLB in medium to high SNR cases.

Adaptive Compensation Method Using the Prediction Algorithm for the Doppler Frequency Shift in the LEO Mobile Satellite Communication System

  • You, Moon-Hee;Lee, Seong-Pal;Han, Young-Yearl
    • ETRI Journal
    • /
    • v.22 no.4
    • /
    • pp.32-39
    • /
    • 2000
  • In low earth orbit (LEO) satellite communication systems, more severe phase distortion due to Doppler shift is frequently detected in the received signal than in cases of geostationary earth orbit (GEO) satellite systems or terrestrial mobile systems. Therefore, an estimation of Doppler shift would be one of the most important factors to enhance performance of LEO satellite communication system. In this paper, a new adaptive Doppler compensation scheme using location information of a user terminal and satellite, as well as a weighting factor for the reduction of prediction error is proposed. The prediction performance of the proposed scheme is simulated in terms of the prediction accuracy and the cumulative density function of the prediction error, with considering the offset variation range of the initial input parameters in LEO satellite system. The simulation results showed that the proposed adaptive compensation algorithm has the better performance accuracy than Ali's method. From the simulation results, it is concluded the adaptive compensation algorithm is the most applicable method that can be applied to LEO satellite systems of a range of altitude between 1,000 km and 2,000 km for the general error tolerance level, M = 250 Hz.

  • PDF

Animal Tracking System Using the Doppler Effect for Single LEO Satellite (도플러 효과를 이용한 단일 저궤도위성의 동물추적시스템 개발)

  • Lee, Jeong-Nam;Jang, Yeong-Geun;Lee, Byeong-Hun;Mun, Byeong-Yeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.11
    • /
    • pp.61-69
    • /
    • 2006
  • Position determination accuracy is strongly depending on how much precisely and frequently satellite receiver measures transmitted signals from terminals on target animals when Doppler effect is applied for position determination. ARGOS satellite system has shown relatively high position determination accuracy by operating multiple satellites, which enable operator to get more Doppler shift data from terminals. In case of animal tracking mission with single satellite, however, it is difficult for the satellite receiver to receive transmitted signals from terminals frequently during short period that satellite passes over ground terminals. This is one of the main sources to decrease position accuracy on target animals. In this paper, the Doppler rate estimation is implemented to increase the number of Doppler shift data received by single satellite. It is proved that the relatively high position determination accuracy with increased number of estimated data can be obtained. We also suggest that the Doppler rate estimation is applicable for position determination system with single satellite.

Delay and Doppler Profiler based Channel Transfer Function Estimation for 2×2 MIMO Receivers in 5G System Targeting a 500km/h Linear Motor Car

  • Suguru Kuniyoshi;Rie Saotome;Shiho Oshiro;Tomohisa Wada
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.9
    • /
    • pp.8-16
    • /
    • 2023
  • In Japan, high-speed ground transportation service using linear motors at speeds of 500 km/h is scheduled to begin in 2027. To accommodate 5G services in trains, a subcarrier spacing frequency of 30 kHz will be used instead of the typical 15 kHz subcarrier spacing to mitigate Doppler effects in such high-speed transport. Furthermore, to increase the cell size of the 5G mobile system, multiple base station antennas will transmit identical downlink (DL) signals to form an expanded cell size along the train rails. In this situation, the forward and backward antenna signals are Doppler-shifted in opposite directions, respectively, so the receiver in the train may suffer from estimating the exact Channel Transfer Function (CTF) for demodulation. In a previously published paper, we proposed a channel estimator based on Delay and Doppler Profiler (DDP) in a 5G SISO (Single Input Single Output) environment and successfully implemented it in a signal processing simulation system. In this paper, we extend it to 2×2 MIMO (Multiple Input Multiple Output) with spatial multiplexing environment and confirm that the delay and DDP based channel estimator is also effective in 2×2 MIMO environment. Its simulation performance is compared with that of a conventional time-domain linear interpolation estimator. The simulation results show that in a 2×2 MIMO environment, the conventional channel estimator can barely achieve QPSK modulation at speeds below 100 km/h and has poor CNR performance versus SISO. The performance degradation of CNR against DDP SISO is only 6dB to 7dB. And even under severe channel conditions such as 500km/h and 8-path inverse Doppler shift environment, the error rate can be reduced by combining the error with LDPC to reduce the error rate and improve the performance in 2×2 MIMO. QPSK modulation scheme in 2×2 MIMO can be used under severe channel conditions such as 500 km/h and 8-path inverse Doppler shift environment.