• Title/Summary/Keyword: Doppler processing

Search Result 218, Processing Time 0.025 seconds

A Study on The Davelopement of Electronic Fetal Heart Rate Monitoring System Using Personal Computer (개인용 컴퓨터를 이용한 전자 태아심음 감시장치의 개발에 관한 연구)

  • 정지환;김선일
    • Journal of Biomedical Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.209-214
    • /
    • 1991
  • Digital fetal monitoring system based on the personal computer combined with the digital signal processing (DSP) board was implemented. The DSP board acquires and digitally processes ultra- sound fetal Doppler signal for digital signal conditioning, rectification, low -pass filtering, autocorrealtion function calculation and its peak detection. The personal computer interfaced with the DSP board is in charge of graphic display, hardcopy, data transmission and on -line analysis of fetal heart rate change including on - line warning system, base -line estmation, acceleration, deceleration and variability. It is one of the most suitable situation to apply the DSP chip for siganl conditioning, digital filtering of ultrasound fetal Dopier signal and fetal heart rate estimation using autocorrelation technique .

  • PDF

Fetal heart rate estimation using high resolution pitch detection algorithm (피치 검출 방법을 이용한 태아심음주기의 추출에 관한 연구)

  • Lee, Eung-Goo;Lee, Yong-Hee;Kim, Sun-I.;Lee, Doo-Soo
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1993 no.05
    • /
    • pp.81-85
    • /
    • 1993
  • Despite the simplicity of processing, conventional autocorrelation function (ACF) method for the precise determination of fetal heart rate (FHR) has many problems. In the case of weak or noise corrupted Doppler ultrasound singnals, the ACF method is very sensitive to the threshold level and data window length. It is real troublesome to extract FHR when there is a data loss. To overcome these problems, the high resolution pitch detection algorithm is adapted to estimate the FHR. The FHR is determined from the correlation of two interconnected segments by its maximum correlation value. FHR is compensated with a constant correlation threshold in a greatly smeared noise signal. This method yields more accurate, robust and reliable than the ACF method.

  • PDF

GPS Translator Design and Manufacturing for High Dynamic Vehicle (고기동 항체의 위치추적용 GPS 중계기 설계/제작)

  • 강설묵;이상정
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.39-48
    • /
    • 2003
  • A GPS translator system is used to get the precise and reliable trajectory data for the high dynamic test vehicles, such as missiles or artillery shells. The missile system with high dynamics, vibration and shock needs to determine its position and velocity in particular. The proposed GPS translator on the test vehicle receives GPS signals, amplifies, down-converts, digitally samples, BPSK modulates, up-converts them to S-band, and then retransmits them to the ground translator processing station. It has doppler variation and signal noise, so design method for resolving them is proposed. The performance of the translator is proved by environmental test and real flight test.

A Comparative Study of Reconstruction Methods for LDV Spectral Analysis (LDV 스펙트럼 분석을 위한 재생방법의 비교 연구)

  • 이도환;성형진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.166-174
    • /
    • 1994
  • A critical evaluation is made of the spectral bias which occurs in the use of a laser doppler velocimeter(LDV). Two processing algorithms are considered for spectral estimates: the sample and hold interpolation method(SH) and the nonuniform Shannon reconstruction technique(SR). Assessment is made of these for varying data densities $(0.05{\le}d.d.{\le}5)$ and turbulence levels(t.i.=30%, 100%). As an improved version of the spectral estimator, the utility of POCS (the projection onto convex sets) has been tested in the present study. This algorithm is found useful to be in the region when $d.d.{\gep}3.$

Novel FFT Acquisition Scheme with Baseband Resampling for Multi-GNSS Receivers

  • Jinseok, Kim;Sunyong, Lee;Hung Seok, Seo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.1
    • /
    • pp.59-65
    • /
    • 2023
  • A GNSS receiver must perform signal acquisition to estimate the code phase and Doppler frequency of the incoming satellite signals, which are essential information for baseband signal processing. Modernized GNSS signals have different modulation schemes and long PRN code lengths from legacy signals, which makes it difficult to acquire the signals and increases the computational complexity and time. This paper proposes a novel FFT/Inverse-FFT with baseband resampling to resolve the aforementioned challenges. The suggested algorithm uses a single block only for the FFT and thereby requires less hardware resources than conventional structures such as Double Block Zero Padding (DBZP). Experimental results based on a MATLAB simulation show this algorithm can successfully acquire GPS L1C/A, GPS L2C, Galileo E1OS, and GPS L5.

A Method on the Improvement of the Signal Processing Calculation Structure of the Remote Measurement Level Meter (원격 측정 레벨계의 신호처리 연산 구조 개선 방법)

  • Park, Dongkun;Lee, Kijun
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.3
    • /
    • pp.389-400
    • /
    • 2019
  • Level meters are non-invasively capable of measuring the level of the medium, and a growing variety of level meters are being used in the industry in connection with safety and maintenance. The level meter can be measured according to various kinds of medium such as solid medium such as coal, flour, rice and liquid medium such as water and petroleum. In order to reduce the error depending on the medium, the measurement using the Doppler Effect can compensate the measurement error, However, the number of signal processing steps is increased, the operation speed is further increased, the hardware complexity increases, and a high cost structure is required. In this paper, we propose a method to improve the signal processing operation structure of the remote measurement level meter to reduce the amount of computation and the resource usage of the required FPGA.

Wide-area Surveillance Applicable Core Techniques on Ship Detection and Tracking Based on HF Radar Platform (광역감시망 적용을 위한 HF 레이더 기반 선박 검출 및 추적 요소 기술)

  • Cho, Chul Jin;Park, Sangwook;Lee, Younglo;Lee, Sangho;Ko, Hanseok
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_2
    • /
    • pp.313-326
    • /
    • 2018
  • This paper introduces core techniques on ship detection and tracking based on a compact HF radar platform which is necessary to establish a wide-area surveillance network. Currently, most HF radar sites are primarily optimized for observing sea surface radial velocities and bearings. Therefore, many ship detection systems are vulnerable to error sources such as environmental noise and clutter when they are applied to these practical surface current observation purpose systems. In addition, due to Korea's geographical features, only compact HF radars which generates non-uniform antenna response and has no information on target information are applicable. The ship detection and tracking techniques discussed in this paper considers these practical conditions and were evaluated by real data collected from the Yellow Sea, Korea. The proposed method is composed of two parts. In the first part, ship detection, a constant false alarm rate based detector was applied and was enhanced by a PCA subspace decomposition method which reduces noise. To merge multiple detections originated from a single target due to the Doppler effect during long CPIs, a clustering method was applied. Finally, data association framework eliminates false detections by considering ship maneuvering over time. According to evaluation results, it is claimed that the proposed method produces satisfactory results within certain ranges.

Performance Analysis of Range and Velocity Measurement Algorithm for Multi-Function Radar using Discriminator Estimation Method (변별기 추정방식을 적용한 다기능 레이다용 거리 및 속도 측정 알고리즘 성능 분석)

  • Choi Beyung Gwan;Lee Bum Suk;Kim Whan Woo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.1
    • /
    • pp.109-117
    • /
    • 2005
  • Range and velocity measurement algorithm is a procedure for estimating the accurate target position by using matched filter outputs equally spaced both in range and doppler frequency domain. Especially, in measurement algorithm for multi-function radar, it is necessary to consider processing time as well as accuracy in order to track multi-targets simultaneously. In this paper, we analyze range and velocity measurement algorithm using discriminator estimation method which is a technique applied to angle measurement of monopulse radar. The applied method required constant processing time for estimation can be used in multiple target tacking. But, it is necessary to consider measurement accuracy because of using minimum channel outputs for estimation. In the simulation, we show that the applied method is superior to the traditional gravity center measurement algorithm with respect to the accuracy performance and also analyze the characteristics of the proposed technique by calculating RMS error level as the processing parameters such as pulse width , channel step, etc. change.

GSC-Structured Space-Time Monopulse System (GSC 구조의 시공간 모노펄스 시스템)

  • Kim, Na-Yong;Jeon, Hyeon-Mu;Jung, Young-Seek;Park, Gyu-Churl;Yang, Hoon-Gee
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.12
    • /
    • pp.999-1002
    • /
    • 2017
  • For a target echo containing interference, it is very difficult to improve the performance of a monopulse radar with spatial domain processing, because the statistical property of interference cannot be exclusively obtained. This paper proposes a monopulse system that has a generalized sidelobe canceller(GSC) filter-based time domain processor as a preprocessor prior to conventional monopulse spatial processing. We analytically show the procedure of time-space signal processing running in the system, and assess its performance through simulation. In particular, the performance dependence on the number of taps in the main channel filter and the estimation error in Doppler frequency are assessed by comparison with those of existing systems.

Development of rotational pulse-echo ultrasonic propagation imaging system capable of inspecting cylindrical specimens

  • Ahmed, Hasan;Lee, Young-Jun;Lee, Jung-Ryul
    • Smart Structures and Systems
    • /
    • v.26 no.5
    • /
    • pp.657-666
    • /
    • 2020
  • A rotational pulse-echo ultrasonic propagation imager that can inspect cylindrical specimens for material nondestructive evaluations is proposed herein. In this system, a laser-generated ultrasonic bulk wave is used for inspection, which enables a clear visualization of subsurface defects with a precise reproduction of the damage shape and size. The ultrasonic waves are generated by a Q-switched laser that impinges on the outer surface of the specimen walls. The generated waves travel through the walls and their echo is detected by a Laser Doppler Vibrometer (LDV) at the same point. To obtain the optimal Signal-to-Noise Ratio (SNR) of the measured signal, the LDV requires the sensed surface to be at a right angle to the laser beam and at a predefined constant standoff distance from the laser head. For flat specimens, these constraints can be easily satisfied by performing a raster scan using a dual-axis linear stage. However, this arrangement cannot be used for cylindrical specimens owing to their curved nature. To inspect the cylindrical specimens, a circular scan technology is newly proposed for pulse-echo laser ultrasound. A rotational stage is coupled with a single-axis linear stage to inspect the desired area of the specimen. This system arrangement ensures that the standoff distance and beam incidence angle are maintained while the cylindrical specimen is being inspected. This enables the inspection of a curved specimen while maintaining the optimal SNR. The measurement result is displayed in parallel with the on-going inspection. The inspection data used in scanning are mapped from rotational coordinates to linear coordinates for visualization and post-processing of results. A graphical user interface software is implemented in C++ using a QT framework and controls all the individual blocks of the system and implements the necessary image processing, scan calculations, data acquisition, signal processing and result visualization.