• Title/Summary/Keyword: Doppler Frequency Estimation

Search Result 121, Processing Time 0.029 seconds

A Modified Delay and Doppler Profiler based ICI Canceling OFDM Receiver for Underwater Multi-path Doppler Channel

  • Catherine Akioya;Shiho Oshiro;Hiromasa Yamada;Tomohisa Wada
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.1-8
    • /
    • 2023
  • An Orthogonal Frequency Division Multiplexing (OFDM) based wireless communication system has drawn wide attention for its high transmission rate and high spectrum efficiency in not only radio but also Underwater Acoustic (UWA) applications. Because of the narrow sub-carrier spacing of OFDM, orthogonality between sub-carriers is easily affected by Doppler effect caused by the movement of transmitter or receiver. Previously, Doppler compensation signal processing algorithm for Desired propagation path was proposed. However, other Doppler shifts caused by delayed Undesired signal arriving from different directions cannot be perfectly compensated. Then Receiver Bit Error Rate (BER) is degraded by Inter-Carrier-Interference (ICI) caused in the case of Multi-path Doppler channel. To mitigate the ICI effect, a modified Delay and Doppler Profiler (mDDP), which estimates not only attenuation, relative delay and Doppler shift but also sampling clock shift of each multi-path component, is proposed. Based on the outputs of mDDP, an ICI canceling multi-tap equalizer is also proposed. Computer simulated performances of one-tap equalizer with the conventional Time domain linear interpolated Channel Transfer Function (CTF) estimator, multi-tap equalizer based on mDDP are compared. According to the simulation results, BER improvement has been observed. Especially, in the condition of 16QAM modulation, transmitting vessel speed of 6m/s, two-path multipath channel with direct path and ocean surface reflection path; more than one order of magnitude BER reduction has been observed at CNR=30dB.

Performance Improvement of LMMSE Channel Estimation Method for OFDM Systems (OFDM 시스템을 위한 LMMSE 채널추정기법의 성능 개선)

  • Kang, Yeon-Seok;Kim, Young-Soo;Suh, Doug-Young;Kim, Jin-Sang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.2A
    • /
    • pp.43-50
    • /
    • 2005
  • In this paper, we present an improved channel estimation method for orthogonal frequency division multipexing systems using pilot symbol assisted modulation(PSAM). Conventional linear minimum mean square error(LMMSE) channel estimation method uses only pilot symbols for channel estimation. So, as the fading channel varies rapidly, the system performance is degraded. The basic idea of the proposed scheme is that we firstly estimate channel coefficients at the middle point between two pilot symbols and then compute the channel attenuation by using LMMSE method. Superior performance achieved with the proposed method is illustrated by simulation experiments with the Doppler frequency of 36Hz and 185Hz in comparison with conventional LMMSE channel estimator.

An Efficient Channel Tracking Method in MIMO-OFDM Systems (MIMO-OFDM에서 효율적인 채널 추적 방식)

  • Jeon, Hyoung-Goo;Kim, Kyoung-Soo;Ahn, Ji-Whan;Serpedin, Erchin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.3A
    • /
    • pp.256-268
    • /
    • 2008
  • This paper proposes an efficient scheme to track the time variant channel induced by multi-path Rayleigh fading in mobile wireless Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing (MIMO-OFDM) systems with null sub-carriers. In the proposed method, a blind channel response predictor is designed to cope with the time variant channel. The proposed channel tracking scheme consists of a frequency domain estimation approach that is coupled with a Minimum Mean Square Error (MMSE) time domain estimation method, and does not require any matrix inverse calculation during each OFDM symbol. The main attributes of the proposed scheme are its reduced computational complexity and good tracking performance of channel variations. The simulation results show that the proposed method exhibits superior performance than the conventional channel tracking method [4] in time varying channel environments. At a Doppler frequency of 100Hz and bit error rates (BER) of 10-4, signal-to-noise power ratio (Eb/N0) gains of about 2.5dB are achieved relative to the conventional channel tracking method [4]. At a Doppler frequency of 200Hz, the performance difference between the proposed method and conventional one becomes much larger.

Low Pilot Ratio Channel Estimation for OFDM Systems Based on GCE-BEM

  • Wang, Lidong;Lim, Dong-Min
    • Journal of electromagnetic engineering and science
    • /
    • v.7 no.4
    • /
    • pp.195-200
    • /
    • 2007
  • Doubly-selective channel estimator for orthogonal frequency division multiplexing(OFDM) systems is proposed in this paper. Based on the generalized complex exponential basis expansion model(GCE-BEM), we describe the time-variant channel with time-invariant coefficients over multiple OFDM blocks. The time variation of the channel destroys the orthogonality between subcarriers, and the resulting channel matrix in the frequency domain is no longer diagonal, but the main interference comes from the near subcarriers. Based on this, we propose a channel estimator with low pilot ratio. We first develop a least-square(LS) estimator under the assumption that only the maximum Doppler frequency and the channel order are known at the receiver, and then verify that the correlation matrix of inter-channel interference(ICI) is a scaled identity matrix based on which we derive an optimal pilot insertion scheme for the LS estimator in the sense of minimum mean square error. The proposed estimator has the advantages of low pilot ratio and robustness against inter-carrier interference.

Signal synchronization method for depth information transmission of high-speed underwater vehicle (고속 수중 이동체의 심도 정보 전송을 위한 신호 동기화 기법)

  • Lee, Joo-Hyoung;Lee, Geun-Hyeok;An, Jeong-Ha;Kim, Ki-Man;Han, Min-Su;Kim, Seong-Yong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.2
    • /
    • pp.69-76
    • /
    • 2020
  • This paper deals with a method of transmitting depth information of a high-speed underwater vehicle. The depth information signal transmitted from the high-speed mobile object is received with high frequency variability. In the proposed method, we apply not only frequency synchronization but also additional synchronization on the time axis like the existing method. In the case of a Doppler frequency bank with less resolution than the conventional method through simulations performed in the environment moving up to 50 kn, and the depth information is recovered using the proposed method, the error rate of 6 % ~ 9 % is reduced to 0.2 % ~ 1 %.

Adaptive Compensation Method Using the Prediction Algorithm for the Doppler Frequency Shift in the LEO Mobile Satellite Communication System

  • You, Moon-Hee;Lee, Seong-Pal;Han, Young-Yearl
    • ETRI Journal
    • /
    • v.22 no.4
    • /
    • pp.32-39
    • /
    • 2000
  • In low earth orbit (LEO) satellite communication systems, more severe phase distortion due to Doppler shift is frequently detected in the received signal than in cases of geostationary earth orbit (GEO) satellite systems or terrestrial mobile systems. Therefore, an estimation of Doppler shift would be one of the most important factors to enhance performance of LEO satellite communication system. In this paper, a new adaptive Doppler compensation scheme using location information of a user terminal and satellite, as well as a weighting factor for the reduction of prediction error is proposed. The prediction performance of the proposed scheme is simulated in terms of the prediction accuracy and the cumulative density function of the prediction error, with considering the offset variation range of the initial input parameters in LEO satellite system. The simulation results showed that the proposed adaptive compensation algorithm has the better performance accuracy than Ali's method. From the simulation results, it is concluded the adaptive compensation algorithm is the most applicable method that can be applied to LEO satellite systems of a range of altitude between 1,000 km and 2,000 km for the general error tolerance level, M = 250 Hz.

  • PDF

New channel estimation algorithm for W-CDMA reverse link using pilot symbols over fast Rayleigh-fading multipath channels

  • Koo, Je-Gil;Park, Hyung-Jin
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.982-985
    • /
    • 2000
  • This paper presents channel estimation of an asynchronous W-CDMA reverse link using the interpolation and moving average algorithm in frequency-selective Rayleigh fading channel. The proposed algorithm is an interpolated decision-directed (IDD) block-wise moving average (BWMA) algorithm. The IDD-BWMA algorithm performs two- stage processes. The first stage performs data decision to make a virtual pilot channel by using linear interpolation channel estimation scheme. Then, the second stage performs the channel estimation of the “block-wise moving average” type by using a virtual pilot channel obtained in the first stage. By using Monte-Carlo computer simulations, we show that the proposed channel estimator is superior to other estimation schemes such as the WMSA(K=1) and DD-RAKE at higher Doppler frequencies, especially.

  • PDF

Analysis of Clutter Effects in a Weather Radar (기상 레이다에서의 클러터 영향 분석)

  • Lee, Jonggil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.9
    • /
    • pp.1641-1648
    • /
    • 2016
  • A weather radar estimates Doppler frequency and width of Doppler spectrum from the received weather signal which represents the return echoes from rain or dust particles in a corresponding area. These estimates are very important parameters since they are directly related to precipitation, wind velocity and degree of turbulence. Therefore, these estimated values should be highly reliable to obtain accurate weather information. However, the echoes of a weather radar include both the weather signal and the clutter which occurred from ground reflection or moving objects, etc. The existence of the clutter in the echoes may cause serious errors in the estimation of weather-related parameters. Therefore, in this paper, models are developed to represent the weather signal and the clutter for the purpose of analyzing estimation errors caused by the strong clutter echoes. Using these models, various return echoes according to the weather signal and clutter power are simulated to analyze the effects of the clutter.

Performance Evaluation of OFDM Systems Dependent upon Pilot Patterns (파일럿 패턴에 따른 OFDM 시스템의 성능 분석)

  • Choi, Seung-Kuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.2
    • /
    • pp.273-279
    • /
    • 2007
  • I evaluate the BER performance of OFDM systems in frequency selective Doppler time variant fading channels, considering the pilot patterns for channel estimation. The performance of the systems is degraded due to channel estimation error. For the reduction of performance degradation in acceptable level, the optimum distance of pilot symbols in pilot pattern is 5 subcarriers in frequency domain and 6 OFDM block in time domain.

Reference Symbol Arrangement in LTE OFDM Systems (LTE OFDM 시스템에서의 기준 심볼 배치)

  • Choi, Seung-Kuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.12
    • /
    • pp.2805-2812
    • /
    • 2015
  • For the purpose of estimation of time variant frequency selective transmission channels, reference symbols are usually employed. The bit error performance of LTE OFDM systems is analyzed in the case of LTE standard reference symbol arrangement. Results show that LTE OFDM system with this LTE reference symbol arrangement is robust against Doppler time variant fading. However, the performance of that system is degraded due to channel estimation error in frequency domain. An equidistant arrangement with a diamond shape structure of reference symbols, however having 4 subcarriers distance in frequency domain, is suggested for the optimal channel estimation.