• Title/Summary/Keyword: Doppler FFT

Search Result 51, Processing Time 0.024 seconds

The Relation of Time Resolution and Radial Velocity Accuracy of a CW Doppler Radar (CW 도플러 레이더의 시각 분해능과 시선 속도 정확도의 관계)

  • Ryu, Chung-Ho;Jang, Yong-Sik;Choi, Ik-Hwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.7
    • /
    • pp.815-821
    • /
    • 2012
  • A CW Doppler radar can measure radial velocity of an object. It detects a Doppler frequency shift that is proportioned to radial velocity of a moving object. To detect a Doppler frequency shift, FFT(Fast Fourier Transform) is conducted. In this process, the time domain received signal is transformed to a frequency domain. A number of FFT affects not only the time resolution but also signal to noise ratio of received signal. So finally it is related with a radial velocity accuracy. Therefore in this paper, it is described the relation of time resolution and the radial velocity accuracy.

Target Velocity Estimation using FFT Method

  • Lee, Kwan Hyeong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.1-8
    • /
    • 2020
  • This paper studied a method of estimating target information using a radar in wireless communication. Position information on the target can be estimated angle, distance and velocity. The velocity information can be estimated since the Doppler frequency is changed in the moving target. The signal incident on the receiving array antenna is multiplied by the delay time and the reference signal to represent the output signal. This output signal is estimated by applying FFT (Fast Fourier Transform) after calculating signal correlation through correlation integrator. Since the output signal must be calculated within the correlator, it should be processed with the Dwell time. The correlation signal of the correlation integrator outside this Dwell time is indicated by the velocity measurement error. The FFT is applied to the signal that has passed through the correlated integrator in order to estimate the distance of the signal. The Doppler resolution must be improved because the FFT estimates target information using the Doppler information. The Doppler resolution decreases with increasing the integration time. The velocity information estimation should have no spread of the velocity. As a result of the simulation, there was no spread of the target velocity in this study.

Detection Algorithm for Information on Approach or Deviation of Objects Using CW Doppler Radar and FFT (CW 도플러 레이더와 FFT를 이용한 물체의 접근 이탈 정보 판단 알고리즘)

  • Shin, Hyun-Jun;Han, Byung-Hun;Oh, Chang-Heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.999-1001
    • /
    • 2015
  • CW Doppler radar is capable of giving the relative velocity of an object using the Doppler effect. When detecting more than an object, frequency domain analysis is needed using CW Doppler radar and FFT. Even though the number of objects and velocities can be obtained within the frequency domain, there is a disadvantage that it is difficult to assess information on approach or deviation of an object. When detecting more than an object using FFT, this study suggests an algorithm for efficiently assessing information about approach or deviation of objects within the frequency domain. The proposed algorithm divides sections into real and imaginary numbers in the frequency domain, and then determines deviation if the total sum of the amplitudes of each frequency is on the left side and approach if the total sum of the amplitudes is on the right side.

  • PDF

Analysis of Doppler Spectra in an Airborne Radar (항공기용 레이다에서의 도플러 스펙트럼 분석)

  • Lee, Jong-Gil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.628-631
    • /
    • 2008
  • For the remote sensing purpose, radar systems extract the target information, such as the magnitude of reflectivity and the velocity from the spectrum analysis of return echoes through the Doppler filter bank. This conventional spectrum estimation method, FFT(Fast fourier Transform) is widely used in most radar systems. However, the frequency resolution of return echoes can be seriously degraded in fast moving targets because of the short acquisition time. Since the high Doppler frequency resolution is important in the detection and tracking of fast moving targets, it can cause very unsatisfactory results. Therefore, in this paper, the parameter spectrum estimation method called AR(Autoregressive) spectrum estimation, is investigated to overcome these problems.

  • PDF

A study on the development of CW(Continuous-Wave) Doppler System using FFT (FFT를 이용한 연속초음파 도플러 장치에 관한 연구)

  • Lee, Dae-Hyung;Kang, Chung-Shin;Park, Sei-Hyun;Kim, Young-Kil
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.709-712
    • /
    • 1988
  • Ultrasonic Doppler Diagnostic System utilizes the Doppler effect for measurement of blood velocity. The sign of the Doppler frequency shift represents blood flow direction. CW(Continuous-Wave) Doppler System uses quadrature detection and phase rotation method to produce simultaneous independent audio and velocity signals for forward and reverse blood flow direction in the time-domain, had been fabricated. But time-domain analyzing such as audio evaluation and zero- crossing detection for instantaneous and mean frequnecy measurement do not provide both an accurate and quantitative result. Therefore, it is necessary to adopt frequency-domain technique to improve system performance. In this paper, we describe a unit which is composed of CW Doppler System and real-time spectrum analyzer (installed TMS 32010 DSP Chip). This unit shows time-dependent spectrum variation and mean velocity of Blood signal.

  • PDF

Efficient Doppler Spectrum Estimation in Radar Systems (레이다 시스템에서의 효율적인 도플러 스펙트럼 추정)

  • Lee, Jonggil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.605-608
    • /
    • 2009
  • It is necessary to estimate the Doppler spectrum for each range cell for the extraction of useful information from the return echoes in radar systems used for the remote sending purpose. However, The conventional spectrum estimation method, FFT(Fast Fourier Transform), called the Doppler filter bank, causes the frequency resolution problem if the dwell time is relatively short. This short acquisition time also spreads the side lobe levels of return echoes further, resulting in difficulties for the discrimination of weak target signals included in relatively strong target echoes. Therefore, in this paper, the efficient Doppler spectrum estimation methods are compared and investigated through the parameter spectrum estimation in the time domain to overcome these problems.

  • PDF

L-band Pulsed Doppler Radar Development for Main Battle Tank (전차 탑재 L-밴드 펄수 도플러 레이더 설계 및 제작)

  • Park, Gyu-Churl;Ha, Jong-Soo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.6
    • /
    • pp.580-588
    • /
    • 2009
  • A Missile Warning Radar is an essential sensor for active protection system to detect antitank missile in all weather environments. This paper presents the design, development, and test results of L-band pulsed Doppler radar system for main battle tank. This radar system consists of 3 LRUs, which include antenna unit, transmitter and receiver unit and radar signal & data processing unit. The developed core technologies include the patch antenna, SSPA transmitter, coherent I/Q detector, DSP based Doppler FFT filter, adaptive CFAR, SIW tracking capability, and threat decision. The design performance of the developed radar system is verified through various ground fixed and moving vehicle test.

Design of Low-complexity FFT Processor for Multi-mode Radar Signal Processing (멀티모드 레이다 신호처리를 위한 저복잡도 FFT 프로세서 설계)

  • Park, Yerim;Jung, Yongchul;Jung, Yunho
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.2
    • /
    • pp.85-91
    • /
    • 2020
  • Recently, a multi-mode radar system was designed for efficient operation of unmanned aerial vehicles (UAVs) in various environments, which has the advantage of being able to integrate and utilize methods of the pulse Doppler (PD) radar and the frequency modulated continuous wave (FMCW) radar. For the range detection part of the multi-mode radar signal processor (RSP), the hardware structure using the FFT processor and the IFFT processor is required to be designed in a way that improves efficiency on the area side. In addition, given the radar application environment that requires a variety of distance resolutions, FFT processors need to support variable-length operations. In this paper, the FFT processor and IFFT processor in multi-mode RSP range estimation are designed and proposed as hardware for a single FFT processor that supports variable length operation of 16-1024 points. The proposed FFT processor designed in hardware description language (HDL) and can be implemented with 7,452 logic elements and 5,116 registers.

Improvement of Current Velocity Estimation Method in an ADCP (ADCP에서의 유속 추정 방법 개선에 관한 연구)

  • Lee, Jonggil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.9
    • /
    • pp.1818-1825
    • /
    • 2017
  • An Acoustic Doppler Current Profiler(ADCP) measures the current velocity and analyzes the degree of turbulence using Doppler effects of ultrasonic waves. Therefore, the autocorrelation or FFT spectrum estimates are obtained for extraction of current velocity in each spatial region. However, if the correlation method does not satisfy the assumption that the return signal spectra are symmetric Gaussian, the large bias errors can occur. Also, the accurate estimation of autocorrelation or FFT spectrum is difficult due to the short acquisition interval when the rapid changes of current velocity occur. Thus, in this paper, the estimation method of the autoregressive spectrum peak is suggested for the accurate current velocity measurement of both symmetric and asymmetric spectra. It is shown that estimation quality can be improved using the suggested method comparing with the conventional methods. Many return signals under the various environment are simulated and the results are compared and analyzed for evaluation of the suggested method.

Design and Implementation of a Microwave Motion Detector with Low Power Consumption

  • Sohn, Surg-Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.7
    • /
    • pp.57-64
    • /
    • 2015
  • In this paper, we propose a design of microwave motion detector using X-band doppler radar sensor to minimize the power consumption. To minimize the power consumption and implement battery operated system, pulse input with 2 KHz, 4% duty cycle is exerted on the doppler radar sensor. In order to simplify the process of working with ATmega2560 microcontroller unit, Arduino compatible board is designed and implemented. Arduino is open source hardware and many library software is published as open source tools. Smartphone app is also proposed and designed as a real-time user interface of the motion detector. The SQLite database on the Android mobile operating system is used for recording raw data of motion detection for post-processing job, such as fast Fourier transform (FFT). Bluetooth interface module is implemented on the motion detection board as a wireless communication interface to the smartphone. The speed of human movement is identified by post-processing FFT.