• Title/Summary/Keyword: Doping density

Search Result 357, Processing Time 0.022 seconds

Polymer/LC Composite for Holographic Grating

  • Kim, Byung-Kyu;Woo, Ju-Yeon;Kim, Eun-Hee
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.218-218
    • /
    • 2006
  • A number of new ideas have been implemented to control the droplet morphology and electrooptic properties of holographic polymer dispersed liquid crystal (HPDLC). Doping of conductive fullerene particles to the conventional HPDLC induced dual effects of reducing both droplet coalescence and operating voltage. Chain transfer agent gave higher gel content with lower crosslink density, less dark reactions and less grating shrinkage with much smooth LC-polymer interfaces. Addition of octanoic acid (OA) to the formulation of HPDLC gave a decrease in droplet size and monotonic increase of the off state diffraction throughout the OA content.

  • PDF

Design of 100-V Super-Junction Trench Power MOSFET with Low On-Resistance

  • Lho, Young-Hwan;Yang, Yil-Suk
    • ETRI Journal
    • /
    • v.34 no.1
    • /
    • pp.134-137
    • /
    • 2012
  • Power metal-oxide semiconductor field-effect transistor (MOSFET) devices are widely used in power electronics applications, such as brushless direct current motors and power modules. For a conventional power MOSFET device such as trench double-diffused MOSFET (TDMOS), there is a tradeoff relationship between specific on-state resistance and breakdown voltage. To overcome the tradeoff relationship, a super-junction (SJ) trench MOSFET (TMOSFET) structure is studied and designed in this letter. The processing conditions are proposed, and studies on the unit cell are performed for optimal design. The structure modeling and the characteristic analyses for doping density, potential distribution, electric field, width, and depth of trench in an SJ TMOSFET are performed and simulated by using of the SILVACO TCAD 2D device simulator, Atlas. As a result, the specific on-state resistance of 1.2 $m{\Omega}-cm^2$ at the class of 100 V and 100 A is successfully optimized in the SJ TMOSFET, which has the better performance than TDMOS in design parameters.

Design of an AlGaAs/GaAs Double-Heterojunction Power FET (AlGaAs/GaAs double-heterojunction 전력용 FET의 설계)

  • 박인식;김상명;신석현;이진구;신재호;김도현
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.8
    • /
    • pp.57-62
    • /
    • 1993
  • In this paper, both feasible power gain and power added efficiency at the operating center frequency of 12 GHz are stressed to design a power FET with double-heterjunction structure. The variable parameters or the design are the unit gate width, the gate length, the doping density of AlGaAs, the AlGaAs thickness, the spacer thickness, the Al mole fraction, and the GaAs well thickness. The results of simulation for the FET with 1.mu.m gate length show that the power gain and the power added efficiency are 10.2 dB and 36.3% at 12GHz, respectively. An extrapolation of the relation between current gain and unilateral gain yields a 17 GHz cutoff frequency and 43GHz maximum frequency of oscillation. The calculation of the current versus voltage characteristics show that the output power of the device is about 0.62W.

  • PDF

Preparation and Sintering of Zirconia-Toughnened Alumina Powder (지르코니아 인성강화 알루미나 분체의 제조 및 소결)

  • Rhee, Jhun;Choi, Sang-Wook;Han, Ki-Sung;Kim, Seung-Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.3
    • /
    • pp.167-176
    • /
    • 1992
  • Zirconia-toughnened alumina(ZTA) powders that were uniformly coated with zirconia and yttria on the surface of alumina particles were prepared in order to inhibit the grain growth of alumina. Alumina particles were ultrasonically dispersed in the ethanol solution of Zr-n-propoxide, and then the Zr-alkoxide was hydrolyzed. Hydrated zironia as thin film was stabilized to tetragonal crystalline form by doping yttria as a stabilizer. The prepared ZTA powders had the good sinterability even at the lower temperature. As a result, the sintered bodies showed the enhanced fracture toughness compared with pure alumina. The relative density and fracture toughness(KIC) of the ZTA bodies sintered at 1550$^{\circ}C$ were 98% and 5 MPa$.$m1/2 respectively.

  • PDF

Effect of CuO and $Al_2O_3$ Addition on the Electrical Conductivity of ZnO (ZnO의 전기전도도에 미치는 CuO 및 $Al_2O_3$의 첨가영향)

  • 전석택;최경만
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.1
    • /
    • pp.106-112
    • /
    • 1995
  • In order to examine the effect of CuO and Al2O3 addition on the electrical conductivity of ZnO, both Al2O3 (0, 1, 2, 5, 10at.%) and CuO (1, 5at.%) were added to ZnO. Al2O3 addition (~2at.% Al) increased the total electrical conductivity of ZnO which was already decreased by CuO doping effect Above solid solubility of Al (~2at.%), ZnAl2O4 formed and the total electrical conductivity decreased due to the decrease of sintered density. Impedance measurements were used to know the reason and degree of contribution of three resistive elements, ZnO grain, ZnO/CuO, and ZnO/ZnO grain boundaries, to the total electrical conductivity changed.

  • PDF

Fabrication of Low Loss Silica Slab Waveguide by Flame Hydrolysis Deposition (FHD 공정에 의한 저손실 실리카 슬랩 도파로 형성)

  • 심재기;김태홍;신장욱;박상호;김덕준;성희경
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.6
    • /
    • pp.524-529
    • /
    • 2000
  • Silica slab wavegudie was fabricated on Si substrates by FHD for planar optical passive devices. The slab waveguide consists of lower clad and core layers, where core layer index is controlled by GeO2 addition. Doping of GeO2 in silica is difficult because of the low deposition density due to nonspherical particle generation in FHD process. Silica core particles deposited at various conditions such as flame temperature and substrate scanning were analyzed by SEM and TEM. As the flame temperature increased, the surface roughness of the core layer was decreased up to 3.6 nm after consolidation. Index difference and thickness of core of slab waveguide were 0.3%, 8$\mu\textrm{m}$ respectively. Measured optical loss at TE mode was <0.04 dB/cm at 1.3$\mu\textrm{m}$ and <0.06 dB/cm at 1.55$\mu\textrm{m}$.

  • PDF

X-ray Response Characteristic of Zn in the Polycrystalline Cd1-xZnxTe Detector for Digital Radiography

  • Kang, Sang-Sik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.2
    • /
    • pp.28-31
    • /
    • 2002
  • The Cdl-xZnxTe film was fabricated by thermal evaporation for the flat-panel X-ray detector. The stoichimetric ratio and the crystal structure of a polycrystalline Cd$_{1-x}$ Zn$_{x}$Te were investigated by EPMA and XRD, respectively. The leakage current and X-ray sensitivity of the fabricated films were measured to analyze the X-ray response characteristic of Zn in the polycrystalline CdZnTe thin film. The leakage current and the output charge density of Cd$_{0.7}$Zn$_{0.3}$Te thin film were measured to 0.37 nA/cm$^2$ and 260 pc/cm$^2$ at an applied voltage of 2.5 V/${\mu}{\textrm}{m}$, respectively. Experimental results showed that the increase of Zn doping rates in Cd$_{1-x}$ Zn$_{x}$Te detectors reduced the leakage current and improved the signal to noise ratio significantly.

Electronic Behaviors of Passive Films Formed on Fe-Cr and Fe-Cr-Mo Ferritic Stainless Steels Studied by Mott-Schottky and Cyclic Voltammetry Techniques

  • Kim, Suk-Won;Yoon, Sang-In;Lee, Jae-Bong
    • Corrosion Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.12-17
    • /
    • 2003
  • The effects of Cr content and film formation potential on electronic behaviors of the passive film on Fe-Cr alloys were investigated in borate buffer solution. Influence of pH on passive films of both Fe-Cr and Fe-Cr-Mo alloys was also investigated. Mott-Schottky and cyclic voltammetry techniques were used to elucidate electronic behaviors of passive films and their electrochemical characteristics. AES analysis of passive films was carried out. Results showed that doping density decreased as Cr content and film formation potentials increased. The addition of Mo to Fe-Cr alloy had little influence on donor densities in pH 9.2 solution but some effects on the decrease in donor densities in pH 1.6 acidic solution.

Long-term Testing and Analysis of a ScSZ/LaSrCuFe Cell

  • Wackerl, Jurgen;Peck, Dong-Hyun;Markus, Torsten
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.12
    • /
    • pp.788-795
    • /
    • 2008
  • An electrolyte supported SOFC cell was tested at $800^{\circ}C$ in air for 3600 h with an applied current density of $200\;mA/cm^2$ to examine possible cathode degradation issues. A scandium- stabilized zirconia (ScSZ) with additional manganese doping (ScSZ: Mn) was used as electrolyte. A strontium and copper-doped lanthanum ferrite (LaSrCuFe) and platinum were used as cathode and quasi-anode material, respectively. The DC resistance was logged over the complete testing period. Additionally, impedance spectroscopy was used from time to time to track changes of the cell in-situ. Post-test analysis of the cell using methods like scanning electron microscopy imaging and other electrochemical testing methods allow the identification of different degradation sources. The results indicate a promising combination of electrolyte and cathode material in terms of chemical compatibility and electrical performance.