• Title/Summary/Keyword: Door damper

Search Result 28, Processing Time 0.022 seconds

Development of an Automatic Face Velocity Controller for a Fume Hood System (흄후드 시스템의 면 풍속 자동 제어기 개발)

  • Kim, Hogeol;Jeong, Kyuwon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.304-309
    • /
    • 2013
  • In chemical, medical or biology laboratories Fume Hoods are basic facilities which can protect researchers from dangerous gas as blowing the contaminated air outside. After the air inside the laboratory room is sucked into the hume hood, then, it is blew out by a fan rotated by an AC induction motor. In addition, a damper controls the inside opening of a duct, which the air flows through. The face velocity, air velocity through the front door, have to be kept constant as the set value even though the opening of the door is varied. However, conventional fume hood used to be operated by operator's manual switches. So that, in this paper an automatic control system is developed which controls the face velocity by adjusting the rotating speed of the blow motor and the opening of the damper. Experiments show that this developed system can be used at such laboratories.

Vestibule Smoke Control Considering the Stack Effect and the Opening of the Outside Door (굴뚝효과와 외부출입문 개방을 고려한 부속실 제연)

  • Yongkwang Kim;Zudal Son;Seoyoung Kim;Hasung Kong
    • Journal of the Korea Safety Management & Science
    • /
    • v.26 no.1
    • /
    • pp.15-24
    • /
    • 2024
  • The purpose of this study is to improve the stack effect of the staircase and the failure to take into account the opening of the outside door of the staircase, which are the disadvantages of the existing smoke control only vestibule. As a result of the study, the new vestibule and the staircase simultaneous smoke control are equipped with an exhaust flap damper with an effective opening area of about 0.25 m2 in the upper part of the staircase, and a ventilator-type air supply fan of about 5 m3/s in the lower part, and take measures to prevent overpressure in the staircase. If you use the new simultaneous smoke control method of the vestibule and staircase, you can achieve the following effects. First, it is possible to open the external entrance door. Second, it can reduce the stack effect. Third, the staircase door closes automatically without fail. And a new method of preventing overpressure was proposed for the vestibule.

Study on the Assessment of the Criteria on a Door Closer for the Optimum Design of the Access Door of a Smoke Control Zone (제연구역 출입문의 최적 설계를 위한 도어클로저의 기준 산정에 관한 연구)

  • Lee, Jae-Ou;Choi, Chung-Seog
    • Fire Science and Engineering
    • /
    • v.27 no.3
    • /
    • pp.66-71
    • /
    • 2013
  • The purpose of this study is to assess the criteria on a floor hinge and door closer for the optimum design of the access door of a smoke control room. The door opening force due to differential pressure is 60.75 N, 40.5 N, 32.91 N and 12.66 N when the differential pressure is 60 Pa, 40 Pa, 32.5 Pa and 12.5 Pa, respectively. The door opening force of the floor hinge and door closer to which the criteria of KS F 2806 are applied is 27.5 N, 40 N, 75 N, 100 N and 125 N for the Nos. 1, 2, 3, 4 and 5 class floor hinges and door closers, respectively. This study compared the differential pressure and opening force limits of floor hinges and door closers with the values specified in NFSC 501A and found that they exceeded the criteria specified in NFSC 501A. Therefore, it is necessary to reflect the differential pressure and smoke control wind speeds as well as the opening forces specified in NFSC 501A on the design of floor hinges and door closers. The installation conditions of floor hinges and door closers of access doors differ depending on the type and name of a smoke control damper. This study found that Nos. 1, 2 and 3 floor hinges and door closers could be installed for access doors with low differential pressure and that Nos. 1 and 2 floor hinges and door closers could be installed for access doors with normal differential pressure.

Evaluation of Airflow Control Capability of Natural Ventilators with Various Dampers (자연환기 벤틸레이터의 댐퍼 형태별 환기량 조절능력 평가)

  • Kim, Tae-Hyeong;Ha, Hyun-Chul;Park, Seung-Chul
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.16 no.4
    • /
    • pp.364-374
    • /
    • 2006
  • Natural ventilation technique could be the substitute for or the complement to the local exhaust ventilation system in the sense of protecting work environment. Moreover, it has many strong points ; almost no mechanical parts, no energy use and no noise. If applied appropriately, it could have the very high ventilation rate and save a lot of energy expense. But, it depends on the outdoor environment, especially temperature and wind speed/direction. Predicting the capacity of natural ventilation is not an easy job because it comes from both buoyancy and wind effect. Another problem is too much flow through the ventilator especially in winter time due to too much difference between indoor and outdoor temperature. Thus some ventilators in industries are sealed by door or plastic sheet, resulting in bad work environment. Various types of dampers are used to control the flow rate through ventilators. The capabilities of flow control by damper has not been estimated. In addition, it was not tested whether the damper could obstruct the flow through ventilator when fully opened. To answer these questions, 4 types of dampers were tested by using computational fluid dynamics. 10 different configurations includes no damper, full open and half open. Flow rates were estimated and airflow fields were analysed to clarify the before-mentioned questions. The dual type damper was the best choice for controling the capability of ventilator. In addition, the upward grill type damper was the best for not obstructing the air flow when fully opened.

Field Experiments on Features of Airflow through Open Door in Pressure Differential System (급기가압 제연시스템의 피난문 개방시 방연풍속 형성특성에 대한 현장실험)

  • Kim, Jung-Yup;Rie, Dong-Ho;Kim, Ha-Young
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.463-467
    • /
    • 2008
  • The fact that the major cases of life casualties are from smoke in the fire accidents and the expected steep increase of skyscrapers, huge spaces, multiplexes and huge scaled underground spaces demand establishment of efficient smoke countermeasure. The field experiments on pressure differential systems for smoke management in two high buildings of 20 stories and 21 stories are carried out to evaluate the features of airflow through open door between accommodation and lobby. The procedures and results of experiments are presented.

  • PDF

Study on Measurement Method of Air Egress Velocity in Vestibule of Smoke Control System (특별피난계단 부속실 제연설비의 방연풍속 측정 방법에 관한 연구)

  • Lee, Su-Kyung;Hong, Dae-Hwa
    • Fire Science and Engineering
    • /
    • v.25 no.3
    • /
    • pp.85-90
    • /
    • 2011
  • This study of the vestibule of pressurizing smoke control system installed in domestic high-rise buildings for evacuation in case of fire, when the door is open to forming characteristics of the air flow was analyzed using fire dynamics simulator and analyzed of variance. Vestibule which is compartment of the design condition, air flow in the exhaust damper was formed severe turbulence confirming preceding research. The door position is in the range of formed vortex, unsteady flow of air occurs at the point that the door could be confirmed. According to the NFSC 501A, door to symmetrically separate the average of 10 points or more as measured from the average of wind speed to do is based. Under these conditions, it is difficult to measure the characteristics of the upper air flow of upper points. so measuring points are subdivided by more than 64 points method presented in TAB because severe deviation of wind speed.

The Experimental Study on the Leakage of Automatic Pressure Differential·Overpressure Control Dampers by Increasing the Number of Damper Operation (자동차압·과압조절형댐퍼의 개폐동작횟수 증가에 따른 누설량 실험 연구)

  • Shin, Pyung-Shik;Kim, Hak-Joong
    • Fire Science and Engineering
    • /
    • v.30 no.2
    • /
    • pp.56-61
    • /
    • 2016
  • Recently, Since buildings are bigger and higher, the damage of human life can be increased by fire flame and smoke in fire. Smoke control system is necessary to decrease this damage. Therefore, Air supply pressurization smoke control system is applied to vestibule of escape stairway. NFSC requires pressure differential of above 40 Pa, but pressure differential is excessively overpressure in the field. It is known that the cause of this over pressure differential is much leakage of damper. Over pressure differential can bad effect to escaper by pressurizing the door. Analyze the real leakage of damper by increasing the number of dampers operation for identifying this problems. The result of testing, the leakage has difference between new dampers and increased the number of operation dampers. As the static preassure increase, the leakage difference increase. Comparison with preceding study, this result has similar linear tendency.

The Experimental Study on the Leakage of Automatic Pressure Differential · Overpressure Control Dampers (자동차압 · 과압조절형댐퍼의 누설량 실험 연구)

  • Shin, Pyung-Shik;Kim, Hak-Joong
    • Fire Science and Engineering
    • /
    • v.29 no.6
    • /
    • pp.71-75
    • /
    • 2015
  • Recently, Since buildings are bigger and higher, the damage of human life can be increased by fire flame and smoke in fire. Smoke control system is necessary to decrease this damage. Therefore, Air supply pressurization smoke control system is applied to vestibule of escape stairway. NFSC requires pressure differential of 40 Pa~60 Pa, but pressure differential is over 60 Pa in the field. It is known that the cause of this over pressure differential is much leakage of damper. Over pressure differential can bad effect to escaper by pressurizing the door. Analyze the real leakage of damper by testing for identifying this problems. The result of testing, leakage is $0.090m^3/s{\sim}0.154m^3/s$. It is necessary to limit the leakage of dampers for safe of escapers.

An Study of Pressure Variations in Smoke Control on Protected Escape Routes Using Pressurization (급기가압 제연 시 전실 내 압력변화에 관한 연구)

  • Kim, Hong-Sik;Oh, Dae-Hee
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.247-250
    • /
    • 2008
  • Pressurization is a method of ensuring that protected escape routes(staircases and lobbies) are kept free of smoke for shelterers and fire fighters by raising the air pressure in these spaces above that in the main part of the building. In this study, to estimate a pressurization, the characteristics of pressure difference in a room, a lobby, an air supply shaft at several building elements are investigated with a window, the (a fire) door and a air supply damper so that information about the importance of these experimental parameters can be obtained.

  • PDF