• Title/Summary/Keyword: Domi-Basin

Search Result 7, Processing Time 0.018 seconds

Seismic Stratigraphy and Structural Evolution in Domi Basin, South Sea of Korea (남해 대륙붕 도미분지의 탄성파총서와 구조운동)

  • Kim, Eun-Jung;Oh, Jin-Yong;Chang, Tae-Woo;Yun, Hye-Su;Yu, In-Chang
    • The Korean Journal of Petroleum Geology
    • /
    • v.14 no.1
    • /
    • pp.53-62
    • /
    • 2008
  • Seismic interpretation was carried out based on biostratigraphy of Fukue-1 well in Japan side of the Domi Basin and compared with the Cheju Basin and Tertiary basins in north-west Kyushu. East China Sea Basin including Domi Basin began to develope in the latest Cretaceous$\sim$Paleocene related to rifting. The basin was filled with a thick package of syn-rift sediments during Paleocene to Oligocene and was under post-rift stage effected by transtenssion during Miocene. Previous studies suggest that the basin had been mostly filled with Miocene formation (>3 km), but the Miocene formation is interpreted to be comparatively thin in this study. The thickness of the Miocene formation varies from tens of meters to hundreds of meters and become thicker to the south-west of Cheju Basin. The index taxa of the Oligocene$\sim$Eocene nannofossils and dinoflagellates found in the Cheju Basin and Tertiary basins in north-west Kyushu also corroborate the result of this study.

  • PDF

Seismic Data Processing Suited for Stratigraphic Interpretation in the Domi Basin, South Sea, Korea (남해 대륙붕 도미분지 탄성파자료의 층서해석을 고려한 전산처리)

  • Cheong, Snons;Kim, Won-Sik;Koo, Nam-Hyung;Lee, Ho-Young;Shin, Won-Chul;Park, Keun-Pil
    • Economic and Environmental Geology
    • /
    • v.43 no.6
    • /
    • pp.603-613
    • /
    • 2010
  • The Domi Basin in the South Sea of Korea is located between the Jeju Basin and Ulleung Basins, and is characterized by several sediment sags that are interested to have formed by crustal extension. This paper aims to derive an optimized seismic data processing procedure which helps stratigraphic interpretation of the Domi Basin. In particular, our data processing flow incorporated horizon velocity analysis (HVA) and surface-relative wave equation multiple rejection (SRWEMR) to improve the quality of stack section by enhancing the continuity of reflection events and suppressing peg-leg multiples respectively. As a result of processing procedures in this study, unconformities were recognized in the stack section that defines the early and middle Miocene, Eocene-Oligocene sequences. In addition, the overall quality of the stack section was increased as essential data to investigate the evolution of the basin. The suppression of multiple resulted in the identification of the Cretaceous basement. The data processing scheme evaluated through this study is expected to improve the standardization of processing sequences for seismic data from the Domi and adjacent Sora and north-Sora Basins.

Stratigraphy and Paleoenvironment of Domi-1 and Sora-1 Wells, Domi Basin (도미분지 도미-1, 소라-1공의 층서와 고환경)

  • Yun, Hye-Su;Byun, Hyun-Suk;Oh, Jin-Yong;Park, Myong-Ho;Lee, Min-Woo
    • Economic and Environmental Geology
    • /
    • v.45 no.4
    • /
    • pp.407-429
    • /
    • 2012
  • There has been much debates on the geologic age of the sediments of the Domi Basin, since age results varied after research methods and fossil groups. This study carried out palynological analysis and seismic interpretation to establish a stratigraphy and environmental reconstruction mainly based on fossil dinoflagellates and Seismic data from the Domi-1 and Sora-1 wells. The dinocyst assemblages found enabled zonation of the well sediment sequence resulting in 4 ecozones. Index fossils among dinocysts and palynomorphic substances indicate geologic age of the well ranges from Eocene to Pleistocene, and paleoenvironment varies from freshwater to inner-neritic marine. The fossil association also suggests strong relationship to Japanese Tertiary basins in Kyushu area in terms of stratigraphy and basin developmental history.

Optimal Determination of Marine Seismic Data Processing Parameter for Domi-Sediment Basin (도미퇴적분지 해양탄성파 탐사자료 최적 전산처리 변수도출)

  • Cheong, Snons;Kim, Won-Sik;Koo, Nam-Hyung;Yoo, Dong-Geun;Lee, Ho-Young;Shin, Won-Chul;Park, Keun-Pil
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.4
    • /
    • pp.279-285
    • /
    • 2008
  • Korea Institute of Geoscience & Mineral Resources (KIGAM) carried out 2 dimensional multi-channel seismic surveys for Domi-Basin of east-southern part of Jeju Island, South Sea, Korea in 2007. The purpose of this survey is to investigate the structure of acoustic basement and the potential of energy resources in the Korean shelf. It is essential to produce fine stack and migration section to understand the structure of basement. However a basement can not be clearly defined where multiples exist between sea surface and seafloor. This study aimed at designing the optimal data processing parameter, especially to eliminate the peg-leg multiples. Main data processing procedure is composed of minimum phase predictive deconvolution, velocity analysis and Radon filter. We tested the efficiency of processing parameter from stack sections of each step. Our results confirmed that processing parameters are suitable for the seismic data of Domi-Basin.

Stratigraphy of the BP-1 well from Sora Sub-basin (소라소분지 BP-1공의 층서연구)

  • Oh, Jaeho;Kim, Yongmi;Yun, Hyesu;Park, Eunju;Yi, Songsuk;Lee, Minwoo
    • Economic and Environmental Geology
    • /
    • v.45 no.5
    • /
    • pp.551-564
    • /
    • 2012
  • This study carried out palynological analysis and seismic interpretation to establish a stratigraphic and environmental reconstruction mainly based on fossil palynomorphs and seismic reflection data correlated with the oil exploation well (BP-1) located in the Sora Sub-basin. There were frequent environmental and floral changes due to sea level change in the Sora Sub-basin. The palynomorph assemblages found in the well sediments enabled paleoecological zonation of the well sediment sequence resulting in 4 zones: Ecozone III, Ecozone IV, Ecozone V, Ecozone VI. Index fossils among palynomorphs indicate geological ages of the units within the well ranging from Eocene to Pleistocene, and paleoenvironment varies from freshwater to inner neritic marine. Previous studies suggest that the marine deposits were slightly different in stratigraphic range from well to well. It is considered the difference is credited to geomorphological setting. This study also shows stratigraphic correlation between existing wells and BP-1 well to establishes a standard stratigraphy of the Domi Basin.

Interpretation of Seismic Profiles in the Sora and North Sora Sub-basins, South Sea of Korea (남해 소라 및 북소라 소분지 일대의 탄성파단면 해석)

  • Lee, Sung-Dong;Oh, Jin-Yong;Park, Myong-Ho;Chang, Tae-Woo
    • The Korean Journal of Petroleum Geology
    • /
    • v.14 no.1
    • /
    • pp.63-73
    • /
    • 2008
  • The seismic interpretation was carried out to understand the evolution of the Sora and North Sora Sub-basins, South Sea of Korea. Both sub-basins belong to the Domi Basin, which is located in the northeastern margin of East China Sea Basin with Fukue Basin of Japan. Age assignment of each strata in this study was based on the data of boreholes and seismic interpretation in NW Japan. Four regional horizons were identified, and five geological units; Y(basement), Q(Eocene$\sim$Middle Oligocene), M(Middle Oligocene$\sim$Early Miocene), L(Early Miocene$\sim$Late Miocene) and D(Late Miocene$\sim$Present) groups in ascending order. Structural trends of the main boundary faults and the basin-fill sediment are different between the Sora and North Sora Sub-basins; i.e., trend of the main boundary-faults, dip of horizons, distribution of basin and development of growth fault. These results imply that the Sora Sub-basin would have opened earlier than the North Sora Sub-basin.

  • PDF

The Late Quaternary Environmental Change in Youngyang Basin, South Eastern Part of Korea Penninsula (第四紀 後期 英陽盆地의 自然環境變化)

  • Yoon, Soon-Ock;Jo, Wha-Ryong
    • Journal of the Korean Geographical Society
    • /
    • v.31 no.3
    • /
    • pp.447-468
    • /
    • 1996
  • The peat layer was deposited on the abandoned channel of incised meander of River Banbyuncheon with 7 meter thickness on Youngyang basin. The late Quaternary environmental change on the study area was discussed based on pollen anaalysis and radiocarbon-dating from this peat. The swamp which was caused to sediment the peat, was produced by which the fan debris from the adjacent slope damed the waterflow on the abandoned channel. The peat layer contains continuous vegetational history from 60,000y.B.P. to Recent. The peat deposit was divided into two layers by the organic thin sand horizon, which was sedimented at one time and made unconformity between the lower decomposed compact peat layers and the upper fresh fiberous peat layer. As the result of the pollen analysis, both peat layers from the two boring sites, Profile YY1 and Profile YY2 were divided into five Pollenzones(Pollenzone I, II, III, IV and V) and 12 Subzones which were mainly corresponded by the AP (Arboreal Pollen)-Dominance. The two profiles have some differences on the sedimentary facies and on the pollen composition as well. Therefore these were in common with the Pollenone III, however the Pollenzone I and II existed only on the Profile YY1 and the Pollenzone IV and V existed only on the Profile YY2. The lower layer containing the Pollenzone I, II and III revealed vegetational records of Pleistocene, which was characterized as tundra-like landscape and thin forested landscapes. It represented the NAP (Non-Arboreal Pollen)-period with a plenty of Artemisia sp., Sanguisorba sp., Umbelliferae, Gramineae and Cyperaceae. However a relatively high proportion of the boreal trees with Picea sp., Pinus sp. and Betula sp. as AP was observed in the lower layer. The upper layer contained the Pollenzone IVb and V and vegetational history in Holocene which was characterized by thick forested landscape with rich tree pollen. It represented AP-period with plenty of Pinus sp. and Quercus sp. as temperate trees. The temperature fluctuation supposed from the vegetational records is as follows; the Pollenzone I(Betula-Dominance, about 57,000y.B.P.) represents relatively cold period. The Pollenzone II(EMW-Domi-nance, 57,000-43,000y.B.P.)represents relatively warm period. This period is supposed to be Interstadial, the transi-tional stage from Alt- to Mittel Wurm. The Pollenzone III(Butula-, Pinus- and Picea-Dominace in turns, 43,000-15,000y.B.P.) reproesents cold period which had been built from Mittel-to Jung Wurm. Especially the Subzone IIId represents the coldest period throughout the Pollenzone III. It is corresponds to Wurm Glacial Maximu. It is supposed that the mean temperature in July of this period was coller about 10${^\circ}$C than present. The Pollenzone IV and V represent the vegetational history of Holocene. Tilia, Quercus and Pinus were dominant in turns during this period. Subzone IVb and Pollenzone I and II at east coastal plain of Korean penninsula reported by JO(1979).

  • PDF