• Title/Summary/Keyword: Domestic regulations on radiation safety

Search Result 14, Processing Time 0.032 seconds

Development of a Measurement Tool for Radiation Safety Regulations (방사선안전규제 측정도구 개발)

  • Han, Eun-Ok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.6203-6207
    • /
    • 2012
  • The aim of the study was to develop an objective measurement tool, which could measure radiation safety regulations as an advanced research to draw evidentiary conclusions for the rationalization of radiation safety regulations as organizations continuously increase consumption of radiation material. The survey was based on the contents of Vol 1~21 of US NRC NUREG 1556 (Consolidated Guidance About Materials Licenses) and material from the Nuclear Safety Act which was based on radiation safety managers who are responsible for about 10% of the domestic registered organizations for radiation usage. As a result of the analysis, 3 main causes were extracted based on 20 questions. Each causes were named as Cause 1: 'Radioactive Safety Regulations Requirements', Cause 2: 'Compatibility of Actual Safety Regulation', and Cause 3: 'RI/RG radiation Source Classification' respectively. The dispersal explanations of each causes were explained in total of 60.417% by 40.140% of Cause 1, 13.721% of Cause 2, and Cause 3 for 6.556% If radiation safety regulation standards are drawn using the radiation safety regulation measurement tool, which is suggested in this study, this could be not only comply with international standards but also could be used to propose a practical standard to domestic radiation safety managers.

Differences between Each Requirement for Radiation Safety Regulation Levels (방사선안전규제 요건별 인식도 차이)

  • Han, Eun Ok;Cho, Dae Hyung
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.4
    • /
    • pp.219-225
    • /
    • 2012
  • This study makes differentiated regulations which can maximize the efficiency and convenience of radiation safety regulations by deriving evidence required to establish reasonable safety regulatory structure based on the determination of the levels of actual radiation safety regulations for radiation safety managers to perform radiation safety. We surveyed approximately 10% of radiation safety managers from domestic radiation-using organizations which was based on the Nuclear Safety Act and NUREG Vol. 1~21 of RS-G-1.9 (2005), NRC of IAEA, etc. The radiation safety managers showed the highest level of awareness on the requirements for exposure management ($3.32{\pm}0.910$), and the lowest level on the requirements for record keeping and storage of documents ($2.84{\pm}0.826$). Industrial organizations showed higher levels of awareness than medical organizations whose regulations should be more stringent on requirements of the status and management of radioactive sources, facilities, measurements, pollution control, measuring equipment, monitoring, education and training, and exposure management. This suggests that the actual regulations need to be re-evaluated because it is attributed to the regulations which are statistically significant difference of the levels of radiation safety regulations between industrial organizations and medical organizations. The process of developing regulatory requirements for each characteristic of domestic organizations needs to be done in future studies, as well as safety regulations to maximize convenience should be achieved if radiation safety regulations are conducted in consideration with the characteristics of each organization.

Status of Domestic and International Recommendations for Protection Design and Evaluation of Medical Linear Accelerator Facilities

  • Choi, Sang Hyoun;Shin, Dong Oh;Shin, Jae-ik;Kwon, Na Hye;Ahn, So Hyun;Kim, Dong Wook
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.83-91
    • /
    • 2021
  • Various types of high-precision radiotherapy, such as intensity-modulated radiation therapy (IMRT), tomotherapy (Tomo), and stereotactic body radiation therapy have been available since 1997. After being covered by insurance in 2015, the number of IMRT cases rapidly increased 18-fold from 2011 to 2018 in Korea. IMRT, which uses a high-beam irradiation monitor unit, requires higher shielding conditions than conventional radiation treatments. However, to date, research on the shielding of facilities using IMRT and the current understanding of its status are insufficient, and detailed safety regulation procedures have not been established. This study investigated the recommended criteria for the shielding evaluation of facilities using medical linear accelerators (LINACs), including 1) the current status of safety management regulations and systems in domestic and international facilities using medical LINACs and 2) the current status of the recommended standards for safety management in domestic and international facilities using medical LINACs. It is necessary to develop and introduce a safety management system for facilities using LINACs for clinical applications that is suitable for the domestic medical environment and corresponds to the safety management systems for LINACs used overseas.

Improvement of the Occupational Safety and Health Act by the Comparison of the Domestic and Foreign Radon-related Policies (국내·외 라돈 관련 제도 비교를 통한 산업안전보건법 개선방안)

  • Lim, Dae Sung;Kim, Ki-Youn;Cho, Yong Min;Seo, Sung Chul
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.31 no.3
    • /
    • pp.226-236
    • /
    • 2021
  • Objectives: Concerns have been raised about the possible health effects of radon on both workers and consumers with the spread of social attention to the impact of radon exposure. Thus, an entire raw material handling workshop was investigated, and standards for radon levels in the workplace were newly established at 600 Bq/m3. However, regulations on the management of workers exposed to radon are still insufficiently developed. Therefore, by comparative analysis of overseas and domestic radon-related regulations for workplaces, this study aims to suggest improvement plans of protection regulations under the Occupational Safety and Health Act (OSH Act) for the prevention of health disorders of radon-exposed workers. Methods: For overseas case studies, we consulted radon-related laws and reports officially published on the websites of the European Union (EU), the United States (U.S.) and the United Kingdom (UK) government agencies. Domestic law studies were conducted mainly on the Act on Protective Action Guidelines against Radiation in the Natural Environment and the OSH Act. Results: In Europe, the basic safety standards for protection against risks arising from radon (Council Directive 2013/59/EURATOM of 5 December 2013) was established by the EU. They recommend that the Member States manage radon level in workplaces based on this criterion. In the U.S., the standards for workplaces are controlled by the Occupational Safety and Health Administration (OSHA) and the Mine Safety and Health Administration (MSHA). Action on radon in the UK is specified in "Radon in the workplace" published by the Health and Safety Executive (HSE). Conclusions: The Act on Protective Action Guidelines against Radiation in the Natural Environment mainly refers to the management of workplaces that use or handle raw materials but does not have any provisions in terms of protecting naturally exposed workers. In the OSH Act, it is necessary to define whether radon is included in radiation for that reason that its current regulations have limitations in ensuring the safety workers who may be exposed to naturally occurring radon. The management standards are needed for workplaces that do not directly deal with radon but are likely to be exposed to radon. We propose that this could be specified in the regulations for the prevention of health damage caused by radiation, not in Article 125 of the OSH Act.

[ $^{99m}Tc$ ] Generator Safety Simulation Based on GEANT4 (GEANT4를 이용한 $^{99m}Tc$ Generator 안전성 시뮬레이션)

  • Kang, Sang-Koo;Han, Dong-Hyun;Kim, Chong-Yeal
    • Progress in Medical Physics
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • Technisium $(^{99m}Tc)$ is one of the most widely used radioactive isotopes for diagnosis in nuclear medicine. In general, technisium is produced inside the so called $^{99m}Tc$ generator which is usually made out of lead to shield relatively high energy radiation from $^{99}Mo$ and its daughter nuclide $^{99m}Tc$. In this paper, a GEANT4 simulation is carried out to test the safety of the $^{99m}Tc$ generator, taking the Daiichi product with radioactivity of 500 mCi as an example. According to the domestic regulation on radiation safety, the dose at 10 cm and 100 cm away from the surface of shielding container should not exceed 2.0 mSv/h and 0.02 mSv/h, respectively. The simulated dose turned out to be less than the limit, satisfying the domestic regulation.

  • PDF

A Study on the Improvement and Application Plans of Korean Nuclear Safety Regulations for their Application on Nuclear powered ships (원자력 선박 적용을 위한 국내 원자력 안전규제 개선 및 적용방안에 관한 고찰)

  • Jaehyun Kim;Junseop Jang;Seungmin Kwon;Sinhyeong Kim
    • Journal of Radiation Industry
    • /
    • v.18 no.2
    • /
    • pp.109-115
    • /
    • 2024
  • As a global effort for eco-friendly, the ship building is making great efforts to develop ships using low-carbon, eco-friendly alternative fuels. Nuclear energy, one of several eco-friendly alternative energy sources, is evaluated as an effective alternative for future ships by minimizing carbon emissions and securing economic feasibility with low power generation cost. However, although appropriate regulatory requirements are necessary for commercialization of nuclear powered ships, there are currently no regulatory requirements for nuclear powered ships in Korea. In this study, accordingly, domestic and international regulatory requirements related to nuclear powered ships were reviewed, matters to be considered in terms of safety when developing domestic marine nuclear reactor regulatory requirements were derived, and a licensing regulatory system for nuclear powered ships was derived.This study is expected to be used as basic reference data when developing regulatory requirements for nuclear powered ships.

Re-evaluation of Korean Effluent Concentration Limits and Comparative Analysis

  • Hwang, Won Tae;Lee, Joeun;Kwon, Dahye;Kim, Eun Han;Han, Moon Hee
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.3
    • /
    • pp.124-129
    • /
    • 2018
  • Background: Effluent Concentration Limits (ECLs) were re-evaluated via direct calculation using dose coefficients based on radiation protection quantity introduced in Korea and the intrinsic breathing rates of Korean residents. Materials and Methods: The re-evaluated ECLs were compared with the domestic standards given in the Notice of the Nuclear Safety and Security Commission (NSSC), as well as with ECLs specified in the Code of Federal Regulations (CFR). Results and Discussion: The relative ratios of the re-evaluated ECLs to the currently applied domestic standards differed depending on the radionuclide type, but it was clearly shown that, for tritium ($^3H$) and radiocarbon ($^{14}C$), which significantly affect radiological dose to the public during the normal operation of nuclear power plants, the re-evaluated ECLs were higher than the domestic standards. This implies that Korean standards are relatively conservative. Conclusion: The re-evaluated results for each age group showed that $^{131}I$ (radioiodine), one of the significant radionuclides, had the lowest values, but nonetheless, the domestic standards for radioiodine were lower than the ECLs given in the CFR and the re-evaluated ECLs via a method given in the CFR.

A Study of Deriving a Roadmap for the Development Industrial Technology Standard of Radiation and Radioisotope (방사선 및 방사성동위원소 산업기술기준 개발을 위한 로드맵 도출 연구)

  • Bo-Bae Cho;Seungil Park;Sang-Mook Kang
    • Journal of Radiation Industry
    • /
    • v.17 no.1
    • /
    • pp.101-110
    • /
    • 2023
  • Radiation and radioisotopes have a high value in terms of utilization that can be used in convergence with various fields. However, due to the specificity of radiation, the use of radiation and radioisotopes is more difficult than in other industrial fields and also involves complex regulations. There are no clear industrial technology standards in these fields. Therefore, the growth of the radiation industry, especially including small companies, is being delayed. Since industrial technology standards play an important role in providing an institutional basis for the continuous development and settlement of domestic technology, the development of technical standards for the radiation and radioisotope industries can lead to systematic growth of the domestic radiation industry. To this end, the technology classification of the radiation industry was promoted and classified into 7 major categories, and detailed classification was divided according to the characteristics of each technology. In addition, a demand and perception survey on the need for industrial technology standards was conducted on RI licensed institutions and companies, and as a result, 61.4% responded that it was necessary, and in particular, they recognized the need for radiation safety(63.3%). In this paper, the technical classification for the radiation field is presented as the first step in the development of industrial technical standards for the radiation industry. In addition, the plan of the current status information and preparation of standard procedures of each category will be discussed.

Safety Simulation of Therapeutic I-131 Capsule Using GEANT4 (GEANT4를 이용한 치료용 I-131 캡슐의 안정성 시뮬레이션)

  • Jeong, Yeong-Hwan;Kim, Byung-Cheol;Sim, Cheol-Min;Seo, Han-Kyung;Gwon, Yong-Ju;Han, Dong-Hyun
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.2
    • /
    • pp.57-61
    • /
    • 2014
  • Purpose Iodine (I-131) is one of the most widely used radioactive isotopes for therapeutic in the field of nuclear medicine. Therapeutic I-131 capsule is made out of lead to shield high energy radiation. Accurate dosimetry is necessarily required to perform safe and effective work for relative workers. The Monte Carlo method is known as a method to predict the absorbed dose distribution most accurately in radiation therapy and many researchers constantly attempt to apply this method to the dose calculation of radiotherapy recently. This paper aims to calculate distance dependent and activity dependent therapeutic I-131 capsule using GEANT4. Materials and Methods Therapeutic capsules was implemented on the basis of the design drawings. The simulated dose was determined by generating of gamma rays of energy to more than 364 keV. The simulated dose from the capsule at the distance of 10 cm and 100 cm was measured and calculated in the model of water phantom. The simulated dose were separately calculated for each position of each detector. Results According to the domestic regulation on radiation safety, the dose at 10 cm and 100 cm away from the surface of therapeutic I-131 capsule should not exceed 2.0 mSv/h and 0.02 mSv/h, respectively. The simulated doses turned out to be less than the limit, satisfying the domestic regulation. Conclusion These simulation results may serve as useful data in the prediction of hands dose absorbed by I-131 capsule handling. GEANT4 is considered that it will be effectively used in order to check the radiation dose.

  • PDF

A Plain on Operation Improvement according to the Analysis of Radio Field's Environment in Domestic Coastal (연안해역 전파환경의 분석과 운용개선 방안)

  • Yun, Jae-Jun;Kim, Byung-Ok;Choi, Jo-Cheon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.1117-1124
    • /
    • 2005
  • The radio field environment is very different according to frequency band, therefore communication condition is equation that VHF is passed by direct radiation and HF is via reflect radiation in ionosphere. Load a ship according to the enforcement regulations of the ships safety act have specificated the radio equipment that should be operating. This paper have analysed by the simulation program about radio field environment for research the communications condition, which is VHF & HF band in domestic coastal. We have Predicted to radio field environment and communications condition using the data of analysis and domestic radio regulation regard to coast navigational ship. Therefore have proposed the necessity for rationally plan on improvement the radio regulation and network cooperation of VHF radio station.

  • PDF