• Title/Summary/Keyword: Domestic Gas Boiler

Search Result 36, Processing Time 0.019 seconds

A Comparative Experiment on the Emission Gas Characteristics of Domestic RDF (국내산(國內産) RDF의 배출(排出)가스 특성(特性) 비교실험(比較實驗))

  • Park, Myung-Ho
    • Resources Recycling
    • /
    • v.16 no.6
    • /
    • pp.46-51
    • /
    • 2007
  • This study aimed at developing high-efficiency RDF(refuse derived fuels) fuel in order to use RDF energy rationally and to recycle industrial product. As most studies in this area are concentrated in large combustion apparatuses such as kilns, but this study was focused on the small-sized heating systems, applying them directly to grate type boiler which has a heating capacity of $66{\sim}132m^2$. The different kinds of fuel are experimented including RDF. Coke and Waste Tire. First, for this, we experimented and analyzed RDF to see the change in its mass and heating value. Also, four kinds of exhaust gas are sampled by gas analyzer including CO, $CO_2$, NO and $NO_2$ at different temperature. As a result, the levels of CO concentration of RDF are higher than these of coke and waste tire. But, the levels of NO, $CO_2$ and $SO_2$ concentration of RDF and coke were lower then the levels when waste tire is burned.

Thermodynamic Analysis on Hybrid Turbo Expander - Heat Pump System for Natural Gas Pressure Regulation (히트펌프를 적용한 터보팽창기 천연가스 정압기지의 열역학적 분석)

  • Sung, Taehong;Kim, Kyoung Hoon;Han, Sangjo;Kim, Kyung Chun
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.4
    • /
    • pp.13-20
    • /
    • 2014
  • In natural gas distribution system, gas pressure is regulated correspond to requirement using throttle valve which is releasing huge pressure energy as useless form. The waste pressure can be recovered by using turbo machinery devices such as a turbo expander. In this process, excessive temperature drop occurs due to Joule-Thompson effect during the expansion process. Installing natural gas boiler before or after the turbo expander prevents temperature drop. Fuel cell or gas engine hybrid system further improve the efficiency, but 1~2% of total transporting natural gas is used for operating the hybrid system. In this study, a heat pump system is proposed as a preheating device which can be operated without using transporting natural gas. Thermodynamic analysis on evaporating and condensing temperatures and refrigerants is conducted. Results show that R717 is proper refrigerant for the hybrid system with high COP and low turbine work within the defined operating conditions. In domestic usage in Korea, the heat pump system has more economic feasibility owing to natural gas being imported with a high price of LNG form.

Virtual Analysis of District Heating System Using ENetPLAN (EnetPLAN을 이용한 지역난방시스템 가상 운전 분석)

  • Ahn, Jeongjin;Lee, Minkyung;Kim, Laehyun
    • Journal of Energy Engineering
    • /
    • v.28 no.3
    • /
    • pp.18-25
    • /
    • 2019
  • In this study, in order to solve the problem of the program of calculating code input by experienced users in the power generation, the wide area energy network research group developed the local heating operation analysis program EntPLAN, which can be easily used by anyone, including scalability, with domestic technology. Therefore, the Commission intended to compare the heat sources, heat demand, and the results of operation of the combined heat plant (CHP) on the energy network through simulation with the EnetPLAN and the program A on the market. The results showed that the heat and power output on the energy network of the EnetPLAN and A programs were mostly similar in pattern in the simulation results of the heat supply and the operation method of the accumulator. This enabled the application of the simulation for the various operation modes of the cogeneration facilities existing on the energy network. It is expected that EntPLAN, which was developed with domestic technology, will be easily applied in the field in the future and will present efficient operation simulation results.

Seismic and Stress Analysis of 72.5kV GIS for Technical Specification of KEPCO (72.5kV GIS 전력 장비의 KEPCO 기준 내진 및 응력 해석)

  • Lee, Jae-Hwan;Kim, Young-Joong;Kim, So-Ul;Bang, Myung-Suk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.3
    • /
    • pp.207-214
    • /
    • 2017
  • High voltage electric power transmitter GIS(Gas Insulated Switchgear) above 72.5kV needs to satisfy domestic Korean peninsular standard(ES-6110-0002) in KEPCO with respect to normal and special operation conditions which include internal gas pressure, dead weight, wind and seismic load. Some other requirements not described in Korean standard can be applied from other international standards such as IEC(International Electronical Committee) 62271-203 and 62271-207. The GIS is a kind of pressure vessel structure made of aluminum and filled with SF6 gas of internal pressure 0.4~0.5MPa. Finite element analysis of GIS is performed with such operational loads including seismic loading and the stability and reliability is determined according to ASME BPVC(Boiler and Pressure Vessel Code) SEC. VIII standard where the allowable stress level of the pressure vessel is suggested. The result shows that the stress of GIS is satisfied the allowable stress level and the safety factor is about 2.3 for Korean peninsular standard.

SRF Combustion Pollutants' Impact on Domestic Emissions Assessments (SRF 사용 시 발생되는 대기오염물질 (PM, NOx)의 국가배출량 기여도 평가)

  • Kim, Sang-Kyun;Jang, Kee-Won;Kim, Jong-Hyeon;Yoo, Chul;Hong, Ji-Hyung;Kim, Hyung-Chun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.6
    • /
    • pp.656-665
    • /
    • 2012
  • Recently, yearly production of SRF (Solid Recovered Fuel) as an alternative fuel has been rapidly increasing because of the limited waste disposal, rise in oil prices and reduction of greenhouse gas emission. However, SRF using facilities are excluded from the National Air Pollutant Emission Estimation because SRF using facilities are not yet included among the SCC (Source Classification Code). The purpose of this research was to estimate the emission and emission factor of SRF using facilities' PM and $NO_x$, in order to investigate whether or not they are included in the National Air Pollutant Emission Estimation. The emission factors of SRF using facilities' PM and $NO_x$ are calculated as 0.216 kg/ton, and 3.970 kg/ton, and the emission was estimated based on the yearly total SRF usage of 2011. The results above was 18.7% for PM and 12.8% for $NO_x$ emissions from combustion facility (SCC2) in manufacturing industry combustion (SCC1) of CAPSS. If CAPSS estimate the emission by adding SCC on unlisted SRF in case of Boiler (SCC3) fuel, both PM and $NO_x$'s emissions would increase by 15.8% and 11.3% compare to the emissions for the existing combustion facility. As a result, emissions caused by SRF should be considered when calculating the National Air Pollutant Emission Estimation. In addition, further researches to develop emission factor and improve subdivided SCC should be done in the future, for the accurate and reliable estimation of National Emission.

Physical, Morphological, and Chemical Analysis of Fly Ash Generated from the Coal Fired Power Plant (석탄 화력발전소에서 발생되는 석탄회 특성과 형성 분석에 관한 연구)

  • 이정언;이재근
    • Journal of Energy Engineering
    • /
    • v.7 no.1
    • /
    • pp.146-156
    • /
    • 1998
  • Fly ash produced in coal combustion is a fine-grained material consisting mostly of spherical, glassy, and porous particles. A physical, morphological, and chemical characteristic of fly ash has been analyzed. This study may contribute to the data base of domestic fly ash, the improvement of combustion efficiency, ash recycling and ash collection in the electrostatic precipitator. The physical property of fly ash is determined using a particle counter for the measurement of ash size distribution and gravimeter. Morphological characteristic of fly ash is performed using a scanning electron micrograph and an optical microscope. The chemical components of fly ash are determined using an inductively coupled plasma emission spectrometry (ICP). The distribution of fly ash size was ranged from 15 to 25 $\mu$m in mass median diameter. Exposure conditions of flue gas temperature and duration within the combustion zone of the boiler played an important role on the morphological properties of the fly ash such as shape, relative opacity, coloration, cenosphere and plerosphere. The spherical fly ash might be generated at the condition of complete combustion. The size of fly ash was found to be increased the with particle-particle interaction of agglomeration and coagulation. Fly ash consisted of $SiO_2\;Al_2O_3\;and\;Fe_2O_3$ with 85% and carbon with 3~10% of total mass.

  • PDF