We will introduce a new web-based knowledge management system in progress, in which XML-based web information extraction and our structuring knowledge technologies are combined using ontology-based natural language processing. Our aim is to provide efficient access to heterogeneous information on the web, enabling users to use a wide range of textual and non textual resources, such as newspapers and databases, effortlessly to accelerate knowledge acquisition from such knowledge sources. In order to achieve the efficient knowledge management, we propose at first an XML-based Web information extraction which contains a sophisticated control language to extract data from Web pages. With using standard XML Technologies in the system, our approach can make extracting information easy because of a) detaching rules from processing, b) restricting target for processing, c) Interactive operations for developing extracting rules. Then we propose a structuring knowledge system which includes, 1) automatic term recognition, 2) domain oriented automatic term clustering, 3) similarity-based document retrieval, 4) real-time document clustering, and 5) visualization. The system supports integrating different types of databases (textual and non textual) and retrieving different types of information simultaneously. Through further explanation to the specification and the implementation technique of the system, we will demonstrate how the system can accelerate knowledge acquisition on the Web even for novice users of the field.
The Transactions of The Korean Institute of Electrical Engineers
/
v.66
no.4
/
pp.621-628
/
2017
This paper presents an artificial neural network (ANN) based model with a back-propagation algorithm for short-term load forecasting in microgrid power systems. Owing to the significant weather factors for such purpose, relevant input variables were selected in order to improve the forecasting accuracy. As remarked above, forecasting is more complex in a microgrid because of the increased variability of disaggregated load curves. Accurate forecasting in a microgrid will depend on the variables employed and the way they are presented to the ANN. This study also shows numerically that there is a close relationship between forecast errors and the number of training patterns used, and so it is necessary to carefully select the training data to be employed with the system. Finally, this work demonstrates that the concept of load forecasting and the ANN tools employed are also applicable to the microgrid domain with very good results, showing that small errors of Mean Absolute Percentage Error (MAPE) around 3% are achievable.
Annual Conference on Human and Language Technology
/
2007.10a
/
pp.31-37
/
2007
본 논문에서는 분야 시소러스의 개념과 관계를 이용하여 코아 온톨로지를 확장하는 방법을 제안한다. 분야 시소러스의 개념을 코아 온톨로지의 상위 개념으로 분류하고, 시소러스에서의 광의어(Broader Term: BT)-협의어(Narrower Term: NT) 및 광의어-관련어(Related Term: RT)들 사이의 관계는 코아 온톨로지에서 정의한 의미관계로 분류한다. 유사도와 빈도수 기반의 방법으로 개념 분류를 수행하였고, 관계 분류에서는 두 가지 방법을 적용하였는데, (i) 훈련데이터가 부족한 경우를 위하여 규칙기반 방법으로 BT-NT/RT관계를 isa와 기타 관계(non-isa관계)로 분류하고, 패턴기반 방법으로 non-isa관계를 온톨로지를 위한 의미관계로 분류한다. (ii) 훈련데이터를 충분히 가지고 있을 경우, 최대 엔트로피 모델(MEM)을 적용한 분류 방법을 사용하되, kNN방법으로 훈련데이터를 정제하였다. 본 논문에서 제안한 방법으로 시스템을 구축하였고, 실험 결과, 시스템 성능이 사람에 의한 판단 결과와 비교 가능한 수준이었다.
To address the problems of low precision rate, insufficient feature extraction, and poor contextual ability in existing text sentiment analysis methods, a mixed model account of a CNN-BiLSTM-TE (convolutional neural network, bidirectional long short-term memory, and topic extraction) model was proposed. First, Chinese text data was converted into vectors through the method of transfer learning by Word2Vec. Second, local features were extracted by the CNN model. Then, contextual information was extracted by the BiLSTM neural network and the emotional tendency was obtained using softmax. Finally, topics were extracted by the term frequency-inverse document frequency and K-means. Compared with the CNN, BiLSTM, and gate recurrent unit (GRU) models, the CNN-BiLSTM-TE model's F1-score was higher than other models by 0.0147, 0.006, and 0.0052, respectively. Then compared with CNN-LSTM, LSTM-CNN, and BiLSTM-CNN models, the F1-score was higher by 0.0071, 0.0038, and 0.0049, respectively. Experimental results showed that the CNN-BiLSTM-TE model can effectively improve various indicators in application. Lastly, performed scalability verification through a takeaway dataset, which has great value in practical applications.
The prediction of short-term traffic flow is the theoretical basis of intelligent transportation as well as the key technology in traffic flow induction systems. The research on short-term traffic flow prediction has showed the considerable social value. At present, the support vector regression (SVR) intelligent prediction model that is suitable for small samples has been applied in this domain. Aiming at parameter selection difficulty and prediction accuracy improvement, the artificial bee colony (ABC) is adopted in optimizing SVR parameters, which is referred to as the ABC-SVR algorithm in the paper. The simulation experiments are carried out by comparing the ABC-SVR algorithm with SVR algorithm, and the feasibility of the proposed ABC-SVR algorithm is verified by result analysis. Continuously, the simulation experiments are carried out by comparing the ABC-SVR algorithm with particle swarm optimization SVR (PSO-SVR) algorithm and genetic optimization SVR (GA-SVR) algorithm, and a better optimization effect has been attained by simulation experiments and verified by statistical test. Simultaneously, the simulation experiments are carried out by comparing the ABC-SVR algorithm and wavelet neural network time series (WNN-TS) algorithm, and the prediction accuracy of the proposed ABC-SVR algorithm is improved and satisfactory prediction effects have been obtained.
The Transactions of the Korea Information Processing Society
/
v.4
no.12
/
pp.3185-3199
/
1997
This paper suggests techniques to reduce coding time which is a problem in traditional fractal compression and to improve fidelity of reconstructed images by determining fractal coefficient through adaptive selection of block approximation formula. First, to reduce coding time, we construct a linear list of domain blocks of which characteristics is given by their luminance and variance and then we control block searching time according to the first permissible threshold value. Next, when employing three-level block partition, if a range block of minimum partition level cannot find a domain block which has a satisfying approximation error, we choose new approximation coefficients using a non-linear approximation of luminance term. This boosts the fidelity. Our experiment employing the above methods shows enhancement in the coding time more than two times over traditional coding methods and shows improvement in PSNR value by about 1-3dB at the same com- pression rate.
Journal of Korean Library and Information Science Society
/
v.47
no.4
/
pp.289-307
/
2016
This paper introduces a software system and process model for constructing domain-specific relation extraction datasets semi-automatically. The system uses a set of terms such as genes, proteins diseases and so forth as inputs and then by exploiting massive biological interaction database, generates a set of term pairs which are utilized as queries for retrieving sentences containing the pairs from scientific databases. To assess the usefulness of the proposed system, this paper applies it into constructing a genic interaction dataset related to Alzheimer's disease domain, which extracts 3,510 interaction-related sentences by using 140 gene names in the area. In conclusion, the resulting outputs of the case study performed in this paper indicate the fact that the system and process could highly boost the efficiency of the dataset construction in various subfields of biomedical research.
In this study, HRV signals are analyzed to compare the autonomic nervous system activity of non-pregnant women and pregnant women. 99 disease-free pregnant women and 27 non-pregnant women from W Hospital participated in the study. The acquired HRV signals were used by the program to perform time domain analysis and frequency domain analysis. The measured values were statistically analyzed for differences between pregnancy periods through a one-way ANOVA. In the results, SDNN and RMSSD in time domain analysis had significantly higher results in early pregnancy and non-pregnant women compared to mid- and late pregnancy. In frequency domain analysis, LF and HF had significantly higher values for pregnancy and non-pregnancy compared to midand late-term, but there was no significant difference between VLF and LF/HF. his means that as pregnancy progresses, the ability to control autonomous nerves decreases in the middle and late stages of pregnancy and increases physical fatigue and mental fatigue. Therefore, the longer the pregnancy period, the more special care is needed to maintain mental and physical stability of pregnant women.
Journal of the Korean Society of Food Science and Nutrition
/
v.44
no.10
/
pp.1558-1566
/
2015
The purpose of this study was to examine dietitians' perception of importance about standards of foodservice management associated with long-term care hospital accreditation. This study was carried out through a postal survey consisting of 500 questionnaires, and 157 returned questionnaires were used in the statistical analysis. The results were summarized as follows. Average scores of perception of importance were 4.54/5 points in foodservice production management domain, 4.56/5 points in foodservice facilities management domain, and 4.70/5 points in foodservice sanitation domain. The average scores of importance of long-term care hospitals without accreditation were significantly (P<0.05) lower than those of hospitals with accreditation in items of 'establishment of ventilation equipment in kitchen', 'establishment of hand-washstand in toilet (warm-water, soap)', 'setup of sterilizing foothold in entrance of kitchen and toilet', 'division and use of knife, chopping board, gloves, and utensils before and after cook', 'establishment of cleaning plan and cyclic practice', and 'recording of receiving diary'. Results indicate that there is a need to supplement a casebook of regulations by suggesting detailed and critical limits in the case of below average points of importance. A manual, including HACCP standards for foodservice management of long-term care hospitals, is needed, along with education and webpage for comparing notes on accreditation of long-term care hospitals.
Park, Jong-Chil;Park, Chan-Min;Kim, Byeong-Hwa;Lee, Il-Keun;Jo, Byung-Wan
Journal of the Earthquake Engineering Society of Korea
/
v.10
no.6
s.52
/
pp.115-123
/
2006
This paper presents long-term dynamic characteristics of a cable-stayed bridge where installed SHM (Structural Health Monitoring) system. Modal parameters such as natural frequencies and mode shapes are identified by modal analysis using three dimensional finite element model. The developed baseline model has a good correlation with measured natural frequencies identified from field ambient vibrations. By statistical data processing between measured natural frequencies and temperatures, it is demonstrated that the natural frequency is in linearly inverse proportion to the temperature. The estimation of temperature effects against frequency variations is performed. Mode shapes are identified from the TDD (Time Domain Decomposition) technique for ambient vibration measurements. Finally, these results demonstrate that the TDD method can apply to identify modal parameters of a cable-stayed bridge.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.