• Title/Summary/Keyword: Domain interaction

Search Result 904, Processing Time 0.028 seconds

Performance Analysis of Integrated HIP-PMIPv6 with Multicasting Handoff Scheme in Mobile Vehicular Networks (이동하는 차량 네트워크에서 멀티캐스팅 지원의 통합 HIP-PMIPv6 핸드오프 기법의 성능분석)

  • Gil, Myung-Soo;Lee, Seung-Hyun;Jeong, Jong-Pil
    • The KIPS Transactions:PartC
    • /
    • v.18C no.6
    • /
    • pp.405-412
    • /
    • 2011
  • Our proposed mobility management scheme is based on Multicasting and HIP(Host Identity Protocol) in PMIPv6(Proxy Mobile IPv6) Networks, and allows users to handoff within and across different administrative domains. The main advantage of our scheme is to enable the inter-domain handoff of both types of nodes with a reduced signalling overhead and packet losses. Specifically, the scheme enables the interworking between host-based and network-based mobility support, by means of the interaction between PMIPv6 with Multicasting and HIP. Performance evaluations demonstrate that our scheme improves the handoff latency and packet losses compared to other global mobility management protocols.

Data Mining for Knowledge Management in a Health Insurance Domain

  • Chae, Young-Moon;Ho, Seung-Hee;Cho, Kyoung-Won;Lee, Dong-Ha;Ji, Sun-Ha
    • Journal of Intelligence and Information Systems
    • /
    • v.6 no.1
    • /
    • pp.73-82
    • /
    • 2000
  • This study examined the characteristicso f the knowledge discovery and data mining algorithms to demonstrate how they can be used to predict health outcomes and provide policy information for hypertension management using the Korea Medical Insurance Corporation database. Specifically this study validated the predictive power of data mining algorithms by comparing the performance of logistic regression and two decision tree algorithms CHAID (Chi-squared Automatic Interaction Detection) and C5.0 (a variant of C4.5) since logistic regression has assumed a major position in the healthcare field as a method for predicting or classifying health outcomes based on the specific characteristics of each individual case. This comparison was performed using the test set of 4,588 beneficiaries and the training set of 13,689 beneficiaries that were used to develop the models. On the contrary to the previous study CHAID algorithm performed better than logistic regression in predicting hypertension but C5.0 had the lowest predictive power. In addition CHAID algorithm and association rule also provided the segment characteristics for the risk factors that may be used in developing hypertension management programs. This showed that data mining approach can be a useful analytic tool for predicting and classifying health outcomes data.

  • PDF

A Knowledge based Interaction idea Categorizer for Electronic Meeting Systems

  • Kim, Jae-Kyeong;Lee, Jae-Kwang
    • Journal of Intelligence and Information Systems
    • /
    • v.6 no.2
    • /
    • pp.63-76
    • /
    • 2000
  • Research on group decisions and electroinc meeting systems have been increasing rapidly according to the widespread of Internet technology. Although various issues have been raised in empirical research, we will try to solve an issue on idea categorizing in the group decision making process of elecronic meeting systems. Idea categorizing used at existing group decision support systems was performed in a top-down procedure and mostly participants\` by manual work. This resulted in tacking as long in idea categorizing as it does for idea generating, clustering an idea in multiple categories, and identifying almost similar redundant categories. However such methods have critical limitation in the electronic meeting systems, we suggest an intelligent idea categorizing methodology which is a bottom-up approach. This method consists of steps to present idea using keywords, identifying keywords\` affinity, computing similarity among ideas, and clustering ideas. This methodology allows participants to interact iteratively for clear manifestation of ambiguous ideas. We also developed a prototype system, IIC (intelligent idea categorizer) and evaluated its performance using the comparision experimetn with other systems. IIC is not a general purposed system, but it produces a good result in a given specific domain.

  • PDF

Blast load induced response and the associated damage of buildings considering SSI

  • Mahmoud, Sayed
    • Earthquakes and Structures
    • /
    • v.7 no.3
    • /
    • pp.349-365
    • /
    • 2014
  • The dynamic response of structures under extremely short duration dynamic loads is of great concern nowadays. This paper investigates structures' response as well as the associated structural damage to explosive loads considering and ignoring the supporting soil flexibility effect. In the analysis, buildings are modeled by two alternate approaches namely, (1) building with fixed supports, (2) building with supports accounting for soil-flexibility. A lumped parameter model with spring-dashpot elements is incorporated at the base of the building model to simulate the horizontal and rotational movements of supporting soil. The soil flexibility for various shear wave velocities has been considered in the investigation. In addition, the influence of variation of lateral natural periods of building models on the obtained response and peak response time-histories besides damage indices has also been investigated under blast loads with different peak over static pressures. The Dynamic response is obtained by solving the governing equations of motion of the considered building model using a developed Matlab code based on the finite element toolbox CALFEM. The predicted results expressed in time-domain by the building model incorporating SSI effect are compared with the corresponding model results ignoring soil flexibility effect. The results show that the effect of surrounding soil medium leads to significant changes in the obtained dynamic response of the considered systems and hence cannot be simply ignored in damage assessment and response time-histories of structures where it increases response and amplifies damage of structures subjected to blast loads. Moreover, the numerical results provide an understanding of level of damage of structure through the computed damage indices.

Numerical Prediction of Steady and Unsteady Performances of Contrarotating Propellers

  • Lee, Chang-Sup;Kim, Young-Gi;Baek, Myung-Chul;Yoo, Jae-Hoon
    • Journal of Hydrospace Technology
    • /
    • v.1 no.1
    • /
    • pp.29-40
    • /
    • 1995
  • This paper describes the procedure to predict steady and unsteady performances of a contrarotating propeller(CRP) by a mixed formulation of the boundary value problem(BVP) far the flow around a CRP. The blade BVP is treated by a classical vortex lattice method, whereas the hub BVP is solved by a potential-based panel method. Blades and trailing wakes are represented by a vortex and/or source lattice system, and hubs are represented by normal dipole and source distributions. Both forward and aft propellers are solved simultaneously, thus treating the interaction effect without iteration. The unsteady performance is computed directly in time domain. The new numerical procedure requires a large amount of storage and computing time, which is however no longer a limit in a modern computer system. Sample computations show that the steady performance compares very well with the experiments. The predicted unsteady behavior shows that the dominant harmonics of the total forces are multiples of not only the number of blades of the forward and aft propellers but also the product of both blade numbers. The magnitude of the latter harmonics, present also in uniform oncoming flow, may reach abort 50% of the mean torque for the aft propeller, which in turn may cause a serious vibration problem in the complicated contrarotating shafting system.

  • PDF

A Multi-level Perception Security Model Using Virtualization

  • Lou, Rui;Jiang, Liehui;Chang, Rui;Wang, Yisen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.11
    • /
    • pp.5588-5613
    • /
    • 2018
  • Virtualization technology has been widely applied in the area of computer security research that provides a new method for system protection. It has been a hotspot in system security research at present. Virtualization technology brings new risk as well as progress to computer operating system (OS). A multi-level perception security model using virtualization is proposed to deal with the problems of over-simplification of risk models, unreliable assumption of secure virtual machine monitor (VMM) and insufficient integration with virtualization technology in security design. Adopting the enhanced isolation mechanism of address space, the security perception units can be protected from risk environment. Based on parallel perceiving by the secure domain possessing with the same privilege level as VMM, a mechanism is established to ensure the security of VMM. In addition, a special pathway is set up to strengthen the ability of information interaction in the light of making reverse use of the method of covert channel. The evaluation results show that the proposed model is able to obtain the valuable risk information of system while ensuring the integrity of security perception units, and it can effectively identify the abnormal state of target system without significantly increasing the extra overhead.

Numerical simulation of ice loads on a ship in broken ice fields using an elastic ice model

  • Wang, Chao;Hu, Xiaohan;Tian, Taiping;Guo, Chunyu;Wang, Chunhui
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.414-427
    • /
    • 2020
  • The finite element method is used to simulate the navigation of an ice-area bulk carrier in broken ice fields. The ice material is defined as elastic, and the simulations are accomplished at four model speeds and three ice concentrations. The movements of ice floes in the simulation are consistent with those in the model test, and the percentage deviation of the numerical ice resistance from the ice resistance in the model test can be controlled to be less than 15 %. The key characteristics of ice loads, including the average ice loads, extreme ice loads, and characteristic frequency, are analyzed thoroughly in a comprehensive manner. Moreover, the effects of sailing speed and ice concentration on the ice loads are analyzed. In particular, the stress distribution of ice floes is presented to help understand how model speed and concentration affect the ice loads. The "ice pressure" phenomenon is observed at 90 % ice concentration, and it is realistically reflected both in the time―and frequency―domain ice force curves.

Dynamics of moored arctic spar interacting with drifting level ice using discrete element method

  • Jang, HaKun;Kim, MooHyun
    • Ocean Systems Engineering
    • /
    • v.11 no.4
    • /
    • pp.313-330
    • /
    • 2021
  • In this study, the dynamic interaction between an Arctic Spar and drifting level ice is examined in time domain using the newly developed ice-hull-mooring coupled dynamics program. The in-house program, CHARM3D, which is the hull-riser-mooring coupled dynamic simulator is extended by coupling with the open-source discrete element method (DEM) simulator, LIGGGHTS. In the LIGGGHTS module, the parallel-bonding method is implemented to model the level ice using an assembly of multiple bonded spherical particles. As a case study, a spread-moored Artic Spar platform, whose hull surface near waterline is the inverted conical shape, is chosen. To determine the breaking-related DEM parameter (the critical bonding strength), the four-point numerical bending test is used. A series of numerical simulations is systematically performed under the various ice conditions including ice drift velocity, flexural strength, and thickness. Then, the effects of these parameters on the ice force, platform motions, and mooring tensions are discussed. The simulations reveal various features of dynamic interactions between the drifting ice and moored platform for various ice conditions including the novel synchronous resonance at low ice speed. The newly developed simulator is promising and can repeatedly be used for the future design and analysis including ice-floater-mooring coupled dynamics.

Numerical Analyses on the Formation, Propagation, and Deformation of Landslide Tsunami Using LS-DYNA and NWT

  • Seo, Minjang;Yeom, Gyeong-Seon;Lee, Changmin;Lee, Woo-Dong
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.11-20
    • /
    • 2022
  • Generally, tsunamis are generated by the rapid crustal movements of the ocean floor. Other factors of tsunami generation include landslides on coastal and ocean floor slopes, glacier collapses, and meteorite collisions. In this study, two numerical analyses were conducted to examine the formation, propagation, and deformation properties of landslide tsunamis. First, LS-DYNA was adopted to simulate the formation and propagation processes of tsunamis generated by dropping rigid bodies. The generated tsunamis had smaller wave heights and wider waveforms during their propagation, and their waveforms and flow velocities resembled those of theoretical solitary waves after a certain distance. Second, after the formation of the landslide tsunami, a tsunami based on the solitary wave approximation theory was generated in a numerical wave tank (NWT) with a computational domain that considered the stability/steady phase. The comparison of two numerical analysis results over a certain distance indicated that the waveform and flow velocity were approximately equal, and the maximum wave pressures acting on the upright wall also exhibited similar distributions. Therefore, an effective numerical model such as LS-DYNA was necessary to analyze the formation and initial deformations of the landslide tsunami, while an NWT with the wave generation method based on the solitary wave approximation theory was sufficient above a certain distance.

Simplified analytical solution of tunnel cross section under oblique incident SH wave in layered ground

  • Huifang Li;Mi Zhao;Jingqi Huang;Weizhang Liao;Chao Ma
    • Earthquakes and Structures
    • /
    • v.24 no.1
    • /
    • pp.65-79
    • /
    • 2023
  • A simplified analytical solution for seismic response of tunnel cross section in horizontally layered ground subjected to oblique incidence of SH wave is deduced in this paper. The proposed analytical solution consists of two main steps: free-field response in layered field and tunnel response. The free field responses of the layered ground are obtained by one-dimensional finite element method in time domain. The tunnel lining is treated as a thick-wall cylinder to calculate the tunnel response, which subject to free field stress. The analytical solutions are verified by comparing with the dynamic numerical results of two-dimensional ground-lining interaction analysis under earthquake in some common situations, which have a good agreement. Then, the appropriate range of the proposed analytical solution is analyzed, considering the height of the layered ground, the wavelength and incident angle of SH wave. Finally, by using the analytical solutions, the effects of the ground material, burial depth of the tunnel, and lining thickness and the slippage effect at the ground-lining interface on the seismic response of tunnels are investigated. The proposed solution could serve as a useful tool for seismic analysis and design of tunnels in layered ground.