
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 11, Nov. 2018 5588
Copyright ⓒ 2018 KSII

A Multi-level Perception Security Model
Using Virtualization

Rui Lou*, Liehui Jiang, Rui Chang and Yisen Wang

State Key Laboratory of Mathematical Engineering and Advanced Computing,
Zhengzhou 450002, China
[e-mail: vivagin@yeah.net]

*Corresponding author: Rui Lou

Received December 4, 2017; revised April 9, 2018; accepted May 24, 2018;
 published November 30, 2018

Abstract

Virtualization technology has been widely applied in the area of computer security research
that provides a new method for system protection. It has been a hotspot in system security
research at present. Virtualization technology brings new risk as well as progress to computer
operating system (OS). A multi-level perception security model using virtualization is
proposed to deal with the problems of over-simplification of risk models, unreliable
assumption of secure virtual machine monitor (VMM) and insufficient integration with
virtualization technology in security design. Adopting the enhanced isolation mechanism of
address space, the security perception units can be protected from risk environment. Based on
parallel perceiving by the secure domain possessing with the same privilege level as VMM, a
mechanism is established to ensure the security of VMM. In addition, a special pathway is set
up to strengthen the ability of information interaction in the light of making reverse use of the
method of covert channel. The evaluation results show that the proposed model is able to
obtain the valuable risk information of system while ensuring the integrity of security
perception units, and it can effectively identify the abnormal state of target system without
significantly increasing the extra overhead.

Keywords: Virtualization security, threat model, information perception, VMM protection,
anomaly detection

This work was supported by the Natural Science Foundation of China (No. 61572516).

http://doi.org/10.3837/tiis.2018.11.023 ISSN : 1976-7277

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 11, November 2018 5589

1. Introduction

Virtualization has provided a new and effective way to protect the OS due to its particular
advantages such as environmental isolation, underlying control, resource integration, dynamic
configuration and so on. It can provide many kinds of security services, for example, the
intrusion detection, access control, system kernel protection, etc. It is a hot topic to utilize the
virtualization technology in research of system security.

With its advantages in protecting computer OS, virtualization also exposes the system to
some new risk. There are mainly four types of security issues in virtualization environment: 1)
Internal tempering in virtual machine (VM): the various forms of kernel-level Rootkits which
can steal information and break the system in the state that is not easily perceived [1,2]. 2)
VM-based rootkit: SubVirt [3], BluePill-like [4] and Vitriol [5]. 3) VM covert channel:
including the load-based covert channel [6], the sharing memory covert timing channel [7], the
L2 cache covert channels [8] and some other types [9,10,11]. 4) Attacks against VMM:
including maliciously modifying and nesting the VMM [12].

To address the security problems existing in virtualization system, some studies combine
virtualization with other protection technologies in security design and implementation.
Tupakula et al [13] proposed an intrusion detecting architecture taking into account the
security policies of virtual domains as well as the specific features of the virtual machines to
detect the attacks, with the important components of policy enforcement and behavior capture
engine integrated into the VMM. CTVM [14] is a kernel protection framework that adopts the
hardware-assisted virtualization technology of extended page table to create the isolated
operating environment for untrusted modules, and then monitors them during the runtime to
protect the kernel integrity of guest VM. Zhang et al [15] presented a scheme of embedded
trusted computing environment based on virtual machine architecture named QEMU, wherein
the functions of trusted cryptographic modules are simulated by software, thus with no other
additional hardware. Kumara et al [16] presented a virtual machine introspection (VMI) based
on malicious process detection approach for VM, which extracted the high level information
such as system call, opened known backdoor ports from introspected memory to identify the
spurious process. Win et al [17] introduced the mandatory access control (MAC) to protect the
in-VM monitoring and the hypervisor, aiming at finally protect the guest VM against attacks
with relatively ideal overhead.

Although the methods mentioned above have increased the security of OS by drawing
support from virtualization technology, there are still some deficiencies to be improved.
Firstly, with insufficient considerations on the particularity of virtualization system in aspects
of execution mode, data flow and address isolation, risk models of virtualization system are
built too simply to describe the threats it faces [18,19]. Secondly, with the appearance of
VMM attacking techniques such as the direct memory access coverings [20] and nested
virtualization [21], the assumptions that the VMM and security perception units are safe
enough, which most current designs of protective structure generally make, are no longer
tenable. Thirdly, the combination between security mechanism and virtualization technology
is not fully integrated. With the lack of security channel, the existing interactive way between
guest VM and VMM is single and easy to be detected and utilized by malicious program
[22,23], which reflects the ineffective cooperation between VM and VMM.

On the basis of former research [24], this paper designs and extends the function of I/O
process machine (IOPM) in collaborative-VMM (CVMM) to construct the security

5590 Lou et al.: A Multi-level Perception Security Model Using Virtualization

management domain (SMD), and then builds a multi-level perception security model in
virtualization system aiming at dealing with the problems mentioned above. Related work is
firstly listed in Section 2. Then the attack model is constructed based on the analysis of risk
assumptions in Section 3. The specific design and implementation of the security model is
explained in Section 4. Section 5 carries out the evaluation of the model and Section 6 draws
the conclusion of the paper.

2. Related Work
This paper studies the threats of malicious activities to virtualization system itself including
VM and VMM, then focuses on the design and implementation of a security protection model
based on virtualization, which can be categorized as the research of VM intrusion detection.
The main idea of intrusion detection based on VM is to depart the security perception unit
from target system using the isolation property of virtualization so that the unit can monitor the
intrusion behavior independently, for instance the HyperSpector [25], which reduces the risk
points in distributed system by applying virtualization. The current research mainly focuses on
the following aspects:

1) Logging and Auditing. For the attackers can modify the syslog in traditional system
when they get the control of system, it is no longer reliable, depending on which the
intrusion detection system can do the analysis of malicious program. Dealing with the
problem, ReVirt [26] gets the logger to operate in a VM isolated from other processes,
thus equips the VM with the ability of auditing. The advanced auditing adopts the
similar idea to establish a privileged VM to collect audit logs for each protected VM
[27]. Oikawa et al [28] proposed the framework that performs simultaneous logging
and replay in two isolated VMs running on the same host.

2) Decoy and Interference. With lower costs and risks comparing to physical honeypot,
the honeypot system constructed in VM can log the completed activities of malicious
program in the isolated position. It is also capable of quickly recovering relying on
the backups even if the VM has been broken into. However, the virtual honeypot can
be perceived by attackers because it cannot provide the completely real environment
of system, and the information provided by a single or multiple virtual honeypots is
not enough to reflect the whole feature of intrusion. For the former, the highly
interactive honeypots are proposed to give attackers the adequate feedbacks of
information [29,30]. For the latter, the distributed honey-net system is set up to
provide more accurate attacking report under circumstance of highly cooperating
between virtual honeypots [31,32].

3) Out-of-VM Monitoring. Integrating the advantages of host-based and network-based
intrusion detection systems, some monitoring systems are proposed to make the
intrusion detection components do the monitoring work out of target VM, thus the
components can possess a higher security level. However, two problems that have
driven the study on modified out-of-VM monitoring are the extra cost produced by
exchanging the control when monitoring the calls, and the semantic gap between
VMM and target OS which makes the internal events of VM hard to be
comprehended by detection component. To solve these two problems, NEM adopts a
kind of structure called secure in-VM monitoring to keep the performance advantages
[33]. Virtuoso uses a novel approach for automatically creating introspection tools

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 11, November 2018 5591

for security applications [34]; and TxIntro implements the detecting and identifying
about target VM merely by retrofitting hardware events [35].

3. Threat Model

3.1 Assumption
Virtualization deepens the software stack in the vertical direction of the system. It changes not
only the way OS accesses the resources, but also the trusted computing base (TCB) and
executing mode of original system. Purely from the perspective of the abstract function that
virtualization provides, it could be found that the use of virtualization does not improve the
security of computer system because the VM only represents as the logic example of the
underlying physical machine, the threat that the traditional computer system faces still exist in
the VM. Besides, it can be seen, by the analysis of the security issues existing in virtualization
system in section 1, that the attacker could have more objects to attack. In other words, not
only the OS itself but also the VM, VMM and privileged VM are all in risk of being attacked.
Since the virtualization system suffers a greater risk of attack, a higher security requirement is
needed. Taking comprehensive consideration of the security risks and the minimum
conditions under which the proposed mechanism could run, we make assumptions of the threat
and establish the attack model of CVMM. According to the basic security structure shown in
Fig. 1, CVMM, whose TCB contains the hardware and SMD, provides three forms of security
services—integrating within VMM, deploying inside SMD and operating in VM system in a
front-end way.

Fig. 1. Basic security structure of CVMM

Assumptions of security preconditions and possible risks for CVMM are made as follows:
1) CVMM's TCB consisting of the hardware and SMD, excluding VMM, is safe enough.

The security services in the model would fail if TCB is destroyed.
2) Normally, the data structures in guest OS are reliable depending on which VMM and

SMD can conclude the state of guest system. Even if the guest is invaded and the data
structures are destroyed, and consequently the malicious programs bypass the
security policies relying on them and influence the ability of VMM and SMD that

Security
Perception

Unit VMM

SMD

Security
Perception

Unit

TCB VM

Front-end Security
Perception Unit

GUEST OS

APP

Hardware

Security
Policy

5592 Lou et al.: A Multi-level Perception Security Model Using Virtualization

monitoring information inside the guest, the security of VMM and SMD is still
guaranteed and they can continue to scan the key memory and capture the device
access operations.

3) By means of utilizing the covert channel, the way of perception between guest VM
and VMM has no obvious abnormal features that can be perceived by malicious
programs so that it would not trigger the escape and anti-detection behaviors of them.

4) With the threats of illegal modifications by malicious guests and VMBR attack, VMM
itself is not safe.

5) SMD is a tidy Linux system and possesses the smaller TCB because it has swept away
an amount of irrelevant code. Isolated from VM and VMM, SMD would not be
influenced by malicious programs.

6) SMD is in running state all the time. And any operation on key area of VMM's
memory would be captured by it to ensure safety of VMM.

3.2 Attack model
As shown in Fig. 2, the data flow transmission in CVMM would go through four parts.

Fig. 2. Data flow in CVMM

The assumptions are made that the security perception unit inside VM—SUvm consists of the
code and data, while the library it relying on during operating is defined as SUlib. SUvm is used
to initiatively monitor the events E happening in internal VM. The hook He has been set up
between the start and the end point so that any event e∈E would be intercepted to transmit the
control flow to perception unit. Process switching or inter-domain communication can
implement this transmission. The symbol Ce expresses the context information of guest OS
that He captures, while I(Ce) refers to the informing and calling to SUvm initiated by He. SUvm
sends the processing request Sr(Ce) to VMM perception unit SUvmm, and after that the policy
request Tr(Ce) would be delivered to SUlib for decisions. In the reverse direction of data flow,
Trsp(Ce) expresses the responding from SUlib and Srsp(Ce) answers the request sent by SUvm.
Finally, SUvm responds to hook He with R(Ce) which must be enforced including the update of
system state and modification on execution flow.

The risks may exist in each procedure during the data and control flow delivery. Fig. 3
indicates the possible cases that may be threatened and attacked as shown by dotted lines.

VMSMD

VMM

Hardware

eH

vmSU

vmmSU

()eI C ()eR C

()r eS C ()rsp eS C
()r eT C

libSU

()rsp eT C

GUEST
OS

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 11, November 2018 5593

Fig. 3. Attacking model of CVMM

The risky links that are vulnerable to malicious programs are as follows:
1) Bypassing He which makes I(Ce) unable to be called.
2) Modifying Ce while it is being delivered to SUvm so that SUvm obtain the error

messages.
3) Disturbing SUvm by directly attacking it.
4) Attacking SUvmm by malicious means of DMA covering or VMBR.
5) Damaging SUlib which leads SMD to make wrong decisions.
6) Destroying R(Ce) so that He cannot execute the correct feedback.

4. Design and Implementation
This section presents the design and implementation of the key points from section 4.1 to 4.3,
and then describes and analyzes the entire security model in section 4.4.

4.1 Enhanced isolation mechanism
Address space isolation, for example the isolation among processes or VMs, or between VM
and VMM, is a fundamental measure to protect the system's normal units against malicious
behaviors. It primarily pays attention to preventing the address space from illegal
border-crossing. From the perspective of information security, an enhanced isolation
mechanism is required to realize the more fine-grained address mapping and access
authorization configuration.

As section 3.1 describes, both the guest VM and VMM are exposed to potential risks. The
components that need to be protected contain the perception units, VMM jump code and SMD.
Due to the cross-deployment of risk and security components shown in Table 1, it is required
to enhance the restriction of address mapping and access authorization among these
components.

Table 1. Applications in each class
Insecure cross-deployment Performance Isolation measure

Deploying the security unit in risk
environment

Setting up perceiving point
in guest VM

Prohibiting modifications on
security unit

Deploying the risk code in secure
environment

VMM code that mapping to
SMD space

Banning execution of risk
code

Deploying the irrelevant code in risk
environment

SMD code that mapping to
VMM space

Prohibiting the mapping of
irrelevant code

1: bypass hook

2:modify event content

3:disturb security unit

5:damage dependent libraries 6:destory event respond

eH

()eI C

vmSU

()r eS C

()eR C

libSU

4:attacking VMM

()r eT C

vmmSU
()rsp eT C

()rsp eS C

5594 Lou et al.: A Multi-level Perception Security Model Using Virtualization

The isolation measures should meet the following constraints:
1) For preventing VMM from damaging SMD's integrity, the address space of SMD

cannot be accessed by VMM.
2) SMD can walk through the entire address space. It possesses the reading and writing

privileges on VMM code mapped to its space, but no executing permission. Thus
SMD is able to read and operate the related contents in VMM (for VMI), and avoid
the influence from VMM code at the same time.

3) The perception unit possesses only the reading and executing authorities in VM's
address space to prevent from being modified by malicious code in VM, while it
maintains all authorities in VMM's address space.

4) VMM jump code cannot be modified by forbidding the writing authority on its own in
VMM's address space. SMD is able to conduct the reading and writing operations on
VMM jump code mapped to its address space, without any executing authority. It can
prevent VMM jump code from disturbing SMD itself.

Setting the page properties of the components with R (reading), W (writing) and X
(executing) to satisfy the constraints listed above, we establish the enhanced isolation
mechanism to ensure the safety of security units by controlling the address mapping and page
property authorizing. Fig. 4 expresses the mechanism in detail.

Fig. 4. Schematic diagram of the unit isolation and authority setting

4.2 VMM protection
The guest VM running on VMM or malicious programs activating inside VMM may operate
the key areas of VMM kernel such as page tables, interrupt descriptor tables and VM
management structures. To protect the integrity of VMM's memory, it is required to make
VMM's memory impossible to be modified by attack codes. Since attack codes run in (or start

VMM data

VMM code

VM
perception

point

SMD data

SMD code

VMM
jump code

R

X

R
W
X

R
W

Unmapped
area

R
W
X

R

X

VMM
code

VMM
data

VMM
jump code

VM
perception

point

VM
perception

point R
W

R
W
X

R
W

R
W

R
W

R
W

SMD data

VMM
code

SMD code

VMM
jump code

VM
perception

point

VMM
data

VM Address Space

VMM Address Space

Machine Memory SMD Address Space

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 11, November 2018 5595

from) non-privileged mode, the modifying operation on VMM can only be accomplished in
privileged mode—that is to say, all the operations targeting at VMM's memory must be carried
out by VMM's own routines, for instance the initialization and exit handling. Besides, the code
and data of VMM cannot be accessed by peripherals in DMA way to defend against the DMA
attacking.

It is assumed that virtualization system can be defined as S = (V, P, M) in which V, P and M
respectively represent VMM, malicious program and VMM's memory. First of all, S must
possess three properties—control flow integrity, modularity and atomicity. The control flow
integrity denotes the consistency between source code semantics and actual flow when V is
processing. The modularity expresses that V is composed of the initialization function init()
and a series of exit handling routines ehr1(),…,ehrk(). The atomicity refers that init() will run
independently before other programs, as well as the routines ehr1(),…,ehrk(). The three
properties have been kept during the design and implementation process of CVMM. Therefore
it possesses the sequential character Seq(S), which means that there would be four types of
states appearing in exclusive mode during running process of S—that is to say, S executes
either initializing and exit handling procedures in privilege mode, or the guest VM and
attacking codes in non-privilege mode. The state transition of S is shown in Fig. 5.

Fig. 5. State transition of S

Here are two sequential programs defined as m and n, and the symbol * expresses the
associated and exchangeable relationships, thus m*n refers that m and n are running in
nondeterministic order. The context of a certain program can be defined as the symbol & and
m(&) represents that m is executing in context. The definitions of sequential character Seq(S)
and memory integrity protection are given as follows:

Definition1. (Sequential character) Seq(S) is composed of the sequential programs:
1(&); (){ (&) (&) (&)}kinit while true P ehr ehr∗ ∗ ∗

P(&) in the expression above stands for the execution of any attacking code.
Definition2. (Memory integrity protection) The memory integrity of VMM can be ensured,

if and only if the condition ()Mψ can be satisfied that all memory under ()M Mψ ≡ is read-only
in non-privilege mode.

Theorem1. The memory integrity of S can be guaranteed, if and only if both of the
following conditions can be satisfied:

1. (&) Cond init satisfies Mψ() .
2. [1,], (&) ()iCond for i k ehr satisfies Mψ∈ .

Proof of sufficiency:

Initialization Exit
Handling

VM
Executing

DMA or
Other

Attacks

Privilege
Mode

Privilege
Mode

Non-privilege
Mode

Non-privilege
Mode

5596 Lou et al.: A Multi-level Perception Security Model Using Virtualization

If the memory integrity of VMM has been guaranteed, M can be modified only in privilege
mode. Assuming that neither Cond1 nor Cond2 is satisfied, there must exist a certain variable
(or code) v which leads init(v) or ehri(v) not to satisfy the ()Mψ so that M can be modified in
non-privilege mode, which is in contradiction with the premise. So the sufficiency is proved.

Before the proof of necessity is given, the assumption that S possesses the property of
MAC that is built in M has been made firstly. As previously stated, any access to M by
malicious program P in non-privilege mode will trigger the routines of exit handling because
of violating the condition ()Mψ . Therefore, P will satisfy ()Mψ if S possesses MAC property.

Proof of necessity:
If Cond1 and Cond2 are both tenable, init(&) and 1(&) (&)kehr ehr∗ ∗ will satisfy the

condition ()Mψ . Simultaneously assuming that S possesses MAC property, P(&) also
conforms to ()Mψ . According to definition 1 and inductive method, ()Mψ ought to be
satisfied by the sequential programs 1(&); (){ (&) (&) (&)}kinit while true P ehr ehr∗ ∗ ∗ . It means
that S can satisfy the condition ()Mψ . So the necessity is proved.

It can be seen from the proof above that the memory integrity of S can be ensured if it
possesses MAC property. What's more, MAC property requires that the memory access in
non-privilege mode should be limited by MAC mechanism supported by hardware and be
stored in data field of VMM or other privileged systems. In hardware-assisted virtualization,
VM exit is an architecture event that cannot be bypassed, thus provides a very natural MAC
condition.

This paper establishes the perceiving mechanism from SMD to VMM based on the
distinctive parallel structure of CVMM that makes SMD can perceive the event modifying the
VMM's memory and verify its validity independently even if VMM itself has been attacked.
The main idea of the mechanism is to set the VMM's kernel area to read-only property by
using page protection mechanism, which will lead to the page fault when modifying on that
area occurs. By expanding the mechanism of informing SMD into initial page fault handlers,
SMD can verify the modification event to decide whether it is normal during the pause of
VMM before SMD returns the decision. Fig. 6 shows the perceiving mechanism to protect
VMM.

Fig. 6. Protection of VMM's memory integrity based on parallel perceiving

The key to implement VMM protection is the generation of the page fault events and the
detection of their types. Considering that the address translation must be performed by shadow
page table (SPT) when VM needs to access memory, we set R/W bit of all page table entries to
0 when SPT is created, so as to prohibit all the writing operations on memory (including legal
memory area belonging to VM and VMM memory area). Thus, a large number of page fault

Event 1 Event K

Perception
Export

12

3
4

5

6

Perception
Entrance

Page Fault Jump

Body
Judgement

Authorization
Policy

Hardware

SMD VMM

Modification Event of VMM

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 11, November 2018 5597

events will occur from VM's initial running stage on which lead VM to exit and transfer the
control to VMM, while SMD also has the chance to do further analysis of the events. Due to
the writing protection policy and the unsynchronized features of SPT entry and VM's page
table entry, there exist four types of page faults during the running process of VM, which need
to be handled differently:

1) The page fault caused by the first legal writing operation on VM's legal memory area
because of the violation of writing protection. In this case, the corresponding R/W bit
will be set to 1 so that guest VM could continue to do the writing operations.

2) The page fault caused by the legal operation whose corresponding target SPT entry is
empty. Due to swapping memory pages of VMM or TLB flush operation, the SPT
entries corresponding to legal memory of guest VM may be deleted, which will lead
to page fault when writing operations on these areas occur. For this page fault type,
the corresponding entry will be added in SPT.

3) The page fault caused by missing pages within guest VM. Similar to type 2), a page
fault will occur because of swapping memory pages of VM or TLB flush operation.
For this type, the guest VM performs the conventional page fault handling.

4) The page fault caused by malicious writing operations which violate the writing
protection. Owing to the writing protection strategy, the first writing operation of
malicious program will still be in violation of this strategy, even if it has added the
page table entry to SPT that could make itself able to access VMM memory in some
way. Focusing on this type, we'll replace the instruction corresponding to Guest.EIP
with NULL, and then returns to VM's execution; otherwise the VM will repeatedly
execute the instruction and continue to generate page fault events.

As the detection of page fault type is achieved and supported mainly by accessing to both
SPT and VM page tables, SMD should have the ability to acquire them. Considering that SPT
and VM page table are respectively pointed to by CR3 in VMM address space and in VM
address space, we parsed the virtual machine control structure (VMCS) to enter into the
host-state area and guest-state area under VMCS, where the Host_CR3 and Guest_CR3 can be
acquired.

4.3 Secure perception between VM and VMM
It is beneficial for system security to improve the CVMM's ability of self-protection by
combining the advances of VM's identification and VMM's supervision. Before attacks are
actually generated, the malicious program will present some unusual behaviors such as
altering or deleting files, creating processes and so on. This stage can be called threat-upstream.
In this stage, security unit deployed in guest VM is able to perceive the abnormal activities in
advance. Afterwards, the malicious program has to operate the underlying resources mapped
form the seniors when they launch attacking, for example the access to virtual memory and
device. This stage correspondingly can be called threat-downstream. Since the operations have
triggered the preset conditions of VM exit, VMM can capture them to do the further analysis in
this stage.

The method of protection based on perception is applied as follows: the guest VM reports
the suspicious programs to VMM in threat-upstream; and then VMM obtains the information
to do the follow-up processing in threat-downstream. An important condition shall be satisfied
at first that VM can send the information to VMM in a way as covert as possible. According to
the classical descriptions about existence conditions of covert channel [36], this paper
summarizes the basic requirements to build storage channel combining with the properties of
CVMM. And all of them have been met during the implementation.

5598 Lou et al.: A Multi-level Perception Security Model Using Virtualization

First, both VMM and the guest VM shall have the ability to access some particular chunks
of shared memory. To meet the requirement, a certain memory area R is partitioned by
modifying the VM's and VMM's page tables and memory management algorithms that locates
in physical address space. After being set as reserved area in memory management algorithms,
R can be accessed by both VM and VMM but cannot be allocated by them, as shown in Fig. 7.

Fig. 7. Diagram of shared memory R

Secondly, the guest VM can modify the data in R. As the shared memory R is established,
the guest VM has already possessed the ability to access and operate R.

Thirdly, VMM must be capable of perceiving the change of data in R that is the key point of
building storage channel. With the help of the instruction VMCALL provided by the processor
that support virtualization, VM can actively hand over the control to VMM so that VMM can
make deeper study on the events happening in VM. During the normal running of guest VM,
VMCALL will not be triggered unless VM needs to communicate with VMM. Once detecting
VMCALL, VMM will take out the secret information from R written by VM. This process can
be shown as Fig. 8.

Fig. 8. Storage covert channel between VM and VMM

Finally, the synchronization mechanism is necessary to ensure the correctness of sending
and receiving information. Some certain events can lead to the exit of VM which will pause
until it gets feedbacks—that is to say, VM will not continue to send information until VMM
have completely received it. Therefore, this requirement can be easily satisfied in
virtualization system.

VMM
Management

Area

VM
Management

Area
Shard Memory R

VMM
Management

Area
……

The area VM can access
The area VM and

VMM cannot allocate

The area VMM can access

Guest VM VMM

Private Memory R

VMCALL

Send Secret Information Receive Secret Information

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 11, November 2018 5599

As mentioned above, this paper has established the secure perception mechanism between
VM and VMM by making reverse use of the method of covert channel. The operating process
of the mechanism can be described as follows. When the guest VM perceives the abnormal
operation, the security perception unit will not directly clean it up to avoid triggering the
anti-detection behavior of the malicious program. Now, the guest VM writes the particular
information such as process identifier (PID) or extended stack pointer (ESP) to shared
memory R and then executes VMCALL instruction to make the control trap into VMM. After
that, VMM takes out the information and delivers it to SMD to do further analysis. Finally,
SMD returns the processing result to VMM that will directly ruins the low-level resources
corresponding to the malicious program afterwards. The whole mechanism can be shown as
Fig. 9.

Fig. 9. Diagram of covert perceiving mechanism

The target of secure perception is to handle the malicious program in VM. The

precondition is to comprehend the high-level semantics of guest VM, which SMD should
restore from the information it acquires. We chose the Linux release version Fedora 13 as the
VM system of which the process information is maintained by the structure task_struct. So the
secret information transmitted from secure channel provided by VM ought to make task_struct
be parsed. As the system stack of process and the structure thread_info locate in the continuous
two pages and ESP points to the top of system stack, we can calculate the location of
thread_info through ESP and then leverage the thread_info()->task to find task_struct.
Considering that SPT of the process maintains the mapping relation from guest virtual address
to host physical address, we can locate the ESP's position in machine memory according to the
transmitted ESP and mapping relation, and then parse the thread_info and task_struct to
acquire three key structures: process context, signal queue and the virtual address space, as Fig.
10 shows.

VM

Perception Unit VMM

Hardware

Low-level Resource

Malicious
ProgramAPP

Perception
Unit

Senior
Resource

Covert
Channel

SMD

Perception Unit Perception
Interface

Security
Policy

5600 Lou et al.: A Multi-level Perception Security Model Using Virtualization

Fig. 10. Restoration of high-level semantics of target process

On the basis of obtaining the key information of process, we implement three types of
processing strategies: ①Modifying thread.eip of task_struct to make it point to the invalid
address or to a piece of code containing the terminating operation, which leads guest OS itself
to terminate the process; ②Adding a termination signal SIGKILL to signal queue so that OS
could naturally terminate the process; ③Covering the address space of process forcibly from
VMM layer in case of invalidation of previous two strategies. The vm_area describes the
linear address space of process, so we could leverage task_struct->mm->mmap to locate the
position of it in machine memory and then cover the original data, thus eliminate the malicious
code fundamentally.

4.4 The multi-level perception security model
The preceding sections have demonstrated analysis and solutions of some security problems in
virtualization system: 1) For isolation of security perception units, an enhanced isolation
mechanism is set to make risk components possess the minimum legal authorities to protect
the units from risk environment. 2) For the invalid assumption of VMM's security, a
perceiving mechanism from SMD to VMM based on the distinctive parallel structure of
CVMM is established to ensure the integrity of VMM's memory. 3) For the weak capability of
interaction between VM and VMM in security systems, a covert storage channel is constructed
to make the guest VM capable to send the sensitive information to VMM for further analysis in
private. The security protection model this paper designs can be shown as Fig. 11.

System
Stack

thread_info task_struct

ESP

8K Stack Bottom

0

thread_struct
Context

sig_pending
Signal Queue

vm_area_struct

vm_area_struct

vm_area_struct

mm_struct
Virtual Memory

Address
Space

Pending
Signal

Signal
Handler

sp0
eip
fs
gs
...

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 11, November 2018 5601

Fig. 11. Diagram of the multi-level perception security model

The structure and characteristics of the protection model are described as follows.
1) In the whole protection system, VMM provides the virtualization capability and SMD

offers the security services. VMM and SMD have the same highest privilege. They
possess the separate processors and memory, and they are physically isolated by
means of resource partitioning.

2) The perception units are respectively deployed in VM, VMM and SMD so that VM is
able to initiatively deliver the sensitive information to VMM. Depending on the
information, VMM and SMD can block malicious behaviors in a higher privilege.

3) The hooks are set, focusing on the key resources and paths. Therefore, VMM can
monitor the activities of malicious program in the view of underlying resources and
gain the control in time when the attack on senior resources occur.

4) The units of VMI, security policy and compulsory execution are used to analyze and
identify the behaviors in guest VM. If malicious behaviors are figured out, related
operations will be prevented from executing.

5) With the same privilege as VMM, SMD can access all the memory and enable VMI
unit to get the state of VM directly to reduce the performance overhead caused by
VMM's frequent interventions in the guest VM.

6) The unit of VMM integrity protection in SMD can ensure VMM's safety by verifying
the events of memory modifications.

The proposed model can effectively enhance the capability of risk resistance of the
virtualization system. The enhanced isolation mechanism can ensure that perception unit in
VM space would not be modified, thus prevent it against the risk of being tempered with by
malicious program. It also can block out the interference that SMD suffered from VMM, and
make it provide sustained and effective security services. The VMM protection mechanism
ensures the integrity of VMM, including the security of perception unit in VMM, which can
effectively guard against the attack risk to VMM. The secure perception between VM and
VMM can make VM covertly deliver the key information of malicious program to security
components outside and then eliminate it from underlying layer, which can avoid the risk of
triggering the anti-detection of malicious program.

HARDWARE

VMM
Perception
Interface

Secure Management Domain

APP

Protection Hooks

Perception Unit

Secure Channel

APP

Perception Unit

VMM

Guest VM

Compulsory
Execution

Security
Policy

VMI

GUEST State Collection Unit

VMM Integrity Protection

CPU,MEMORY CPU,MEMORY

Perception Unit

Guest VM

Perception Unit

VMs

5602 Lou et al.: A Multi-level Perception Security Model Using Virtualization

Fig. 12. Execution flow diagram of the security protection model

The execution flow of the protection model is shown as Fig. 12 and described in the
following. Firstly, VMM sets the hooks in the key paths and resources points and they will not
be triggered during the normal executing process of VM. However, VMM will gain the control
in two cases. One is that the operation in VM has broken the rules of VMM protection that may
be generated by malicious behavior. The other is that VM reports the internal information to
VMM actively via secure channel when suspicious behavior appears. After gaining the control,
VMM sends the acquired information to VMI unit set in SMD via perception interface. The
VMI unit can restore the senior semantic information for which the security policy unit will do
further verification to identify whether the corresponding behavior conforms to the rules or not.
The processing result for the system behavior needs to be enforced by VMM that either allows
VM to continue to execute or prohibits the current operation. With the help of the security
policy unit, VMM integrity protection unit will monitor the memory operations all through the
system's running to identify and then prevent the malicious behavior from tampering with
VMM.

5. Evaluation

5.1 Work environment
1. Implementation environment

We have implemented the perception security model shown in Figure 11 on CVMM. The
hardware and software environment of implementation is shown in Table 2 and Table 3.

Table 2. Hardware environment

Sort Description
Processor Intel Core i5 650M @3.2GHz
Chipset Intel Q57
Memory 4GB DDR3 1333MHz
Hard disk 500GB 7200 RPM SATA
Graphics ATI Radeon HD 4650

Architecture Inter X86

VMM Gets Control
VM Remains Paused

1、Forced Exit

2、Covert
Communication

Trigger
Hooks

Perceive
Abnormal
Behavior

3、Information
Transfer

4、VM State
Identification

5、Compliance
Judgement

6、Event Response

VM

VMM

SMD

VMM Integrity
Protection

Parallel Perception

Compulsory
Execution

VMI Security
Policy

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 11, November 2018 5603

Table 3. Software enviromment
Sort Version

VMM CVMM(Xen-based Sandbox)
IOPM Fedora 13(kernel: Linux 2.6.38)
VM ttylinux(kernel: Linux 2.6.38)

Device mode Qemu-dm 2.2
Security software ClamAV 0.99.2

This section will carry out functional test on VMM protection and VM protection, and

evaluate the system overhead. The test of VMM protection shows that the security system can
detect it and make decisions timely when the attack on VMM area occurs to ensure the
integrity of VMM. The test of VM protection shows that security mechanism is able to acquire
the key information through secure channel and successfully parse out the high-level
semantics of malicious process to eliminate it and protect VM. Finally, we evaluate the
overhead of these two mechanisms, and then evaluate the performance of perception security
model when the proposed two mechanisms are both applied in CVMM simultaneously.

2. Prototype platform description
The proposed model is implemented based on CVMM platform which provides the support

of hardware-assisted virtualization technology (VT-x, VT-d, etc.). CVMM is a specific
implementation of Xen-based sandbox and a virtualization platform with a small amount of
code. The architecture of CVMM is very different from traditional virtualization system, as
shown in Fig. 13.

Fig. 13. CVMM architecture

CVMM converts an ordinary VM into a privileged IOPM by the way of hardware
partitioning, allowing it to directly control parts of hardware resource. IOPM controls one
application processor (AP) and runs a modified Fedora inside. It applies Qemu-dm to
complete the device virtualization and provide the virtual resource associated with devices.
VMM controls the bootstrap processor (BSP) and other APs, provides VCPU resource for VM
and manages the memory allocation of system, and realizes the virtualization of processor and
memory. IOPM interacts with the VMM through inter-processor interrupt (IPI) and shared
memory. IOPM possesses the same privilege as VMM and directly runs on hardware, forming
the parallel collaborating structure. Therefore, it not only avoids frequent privilege switching,
but also changes the way of I/O processing that uses Qemu-dm to complete the I/O request of
guest VM.

...

Non-root
Mode

Root
Mode

Kernel
 Mode

User
 Mode

Apps

Guest OS

Communication
Module

Communication
Module

IOPM VM VM

Device
Module

Hardware

AP AP AP BSP...

Apps

Linux
VMM

Apps

Guest OS

5604 Lou et al.: A Multi-level Perception Security Model Using Virtualization

CVMM makes full use of characteristics of multi-processor architecture and hardware
virtualization to manage and allocate virtual resource. It can improve the efficiency of the
system with reduction of the I/O processing cost.

5.2 Security analysis
1. Resource monitoring
As mentioned in Section 4.3, the malicious program would present some unusual behaviors

before attacks are actually generated, and it has to operate the underlying resources mapped
form the seniors when they launch attacking. According to the probable relationships between
senior behaviors and underlying operations of malicious program [37], VMM needs to focus
on controlling the operations for kernel proper memory and monitoring the specific underlying
activities of malicious program to protect the key resources of system. It mainly includes four
aspects as follows.

1) Writing to sensitive memory. VMM needs to set this kind of memory to read-only
mode. The malicious program would be captured by VMM once it is attempt to
modify the memory.

2) Executing system call. Quick system calls and software traps are the two ways to
generate system calls. For doing further analysis of malicious program, VMM shall
set the service entry address to invalid one to lead VM to exit when system call is
triggered by the program.

3) Context switching. Accompanied by page table switching, the context switching can
be monitored by VMM through the change of CR3. Afterwards, VMM continues to
match the current process with the target and acquires more detailed information by
means of VMI.

4) Modifying boot sector. The boot sector is tending to be modified and utilized by
malicious program. Through the device virtualization module, VMM is able to set the
boot sector non-writable to capture the write operation to this area.

2. Forced transfer of control flow
To protect the resources of guest VM, it is important on the one hand to monitor the key

points as listed above so that VMM can gain control once related resources are accessed; on
the other, it is also necessary to force the information flow completely transferred in the
default path for purpose of more reliable post-processing. For some perceiving sites and
transfer points of control flow are deployed in guest VM, not only shall they be isolated from
the code of guest VM to prevent malicious program from bypassing or destroy them, but also
they need to possess the self-contained property to execute themselves independently of VM
code. As analyzed in Section 3, the security requirements of control flow transfer can be
expressed in the following.

1) I(Ce) will be activated if and only if e is generated legally and normally.
2) Ce cannot be modified during from e's occurrence to the process of I(Ce).
3) Sr(Ce) and Tr(Ce) cannot be tempered with during the process of delivering Ce.
4) Trsp(Ce) and Srsp(Ce) cannot be tempered with during the process of returning Ce.
5) R(Ce) must be enforced.

5.3 The results of VMM protection
In this section, the mechanism of VMM protection is tested by structuring the VMM loophole
to provide programs the chance to access VMM memory. Considering that the VM acquires
the whole physical memory depending on E820 of virtual BIOS structured by VMM, it can
make VM access the VMM's private memory by modifying the E820 in VM kernel. As Fig. 14

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 11, November 2018 5605

shows, the guest VM can cross the boundary to access the extra memory size of 40M that
belongs to VMM and cannot be accessed by VM in normal state.

Fig. 14. Results of VM memory detection before and after modifying E820

At this time, the layout of machine memory can be expressed as Fig. 15. The legal access

area for VM ranges from 10M to 610M, while the illegal ranges from 610M to 650M.

Fig. 15. Layout of machine address after modifying E820

When processes generate the writing requests, the page fault will be triggered so that SMD
can judge whether the writing operations are locating on that area size of 40M by analyzing the
destination machine addresses in shadow page table. Fig. 16 expresses the statistic of page
faults over a period.

VMM
Management

Area

VM
Management

Area

Crossing
Boundary

Area

VMM
Management

Area

0

0xA00000 (10M)

0x26200000 (610M)

0x28a00000 (650M)

Accessible
region of VM

Accessible
region of VMM

Illegal access area of VM

legal access area of VM

5606 Lou et al.: A Multi-level Perception Security Model Using Virtualization

Fig. 16. Page fault distribution in machine address space

The page faults belonging from 0xA00000 to 0x26200000 are legal, while the ones ranging

from 0x2620000 to 0x28a00000 are generated by illegal operations of modifying VMM's
memory. Besides, the missing pages of VMM itself trigger the page faults locating above
0x28a00000. After recognizing the different types of page faults, SMD will take measures to
deal with them according to the default policy. For the page fault caused by operating on
VMM's memory, SMD replaces the instruction corresponding to Guest.EIP with NULL, and
then returns to VM's execution.

5.4 The results of VM protection
In our proposed system, the prototype of guest VM is the Linux release version Fedora 13 with
the kernel version 2.6.38. In order to verify the actual effect of perception mechanism in
system protection, malicious programs in Linux system are collected as test data, as shown in
Table 4.

Table 4. Malicious software used in the perception mechanism test
Name Behavior description

Slapper Worm based on the bugs of OpenSSL library
Bliss Virus that infects and locates ELF files, overlays binary files with malicious code
Staog Virus that infects ELF files
Typot Trojan that scans distributed ports and generates TCP packets with window 55808

Mydoom Worm that launches DoS attack by means of network spread and process termination
TNF DDoS agent that can launch attacks such as ICMP Flood, Smurf and so on

Lindose Cross-platform virus infecting both Windows PE and Linux ELF files
ADORE.A Worm that can rewrite /bin/ps and open port 65535
CHEESE.A Worm that removes all /bin/sh in /etc/inetd.conf file and close inetd

Taking Lindose as an example, the test method of the perception mechanism mainly

includes three steps: ESP transmission, data structure analysis and process destruction:
1) ESP transmission. After starting Lindose, the extended security software ClamAV deployed in

VM will first report the threat in system and transmit Lindose's PID to perception unit in VM.
Then the unit identifies and records the process corresponding to the PID. When the process
Lindose is scheduled by kernel, the perception unit gets ESP from the kernel stack of current

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 11, November 2018 5607

process and writes it to the defined memory R, and then calls VMCALL instruction to
generate the VM-exit event. At this moment, the perception unit in VMM can obtain the ESP
of Lindose from R, as analysis in section 4.3.

2) Data structure parsing. The obtained ESP value is the process linear address and it must be
converted to the corresponding machine address by SPT, which can be used to gradually parse
out the corresponding position of thread_info, task_struct and also vm_area in machine
memory. The mapping relation between linear address and machine address of key data
structure of Lindose is shown in Table 5, wherein the symbol ⊗ represents no established
mapping from the corresponding linear address to machine address of vm_area in SPT. There
are two reasons of this situation: one is that the guest VM does not allocate the actual physical
page for corresponding vm_area region, the other is that the SPT and the page of Lindose in
guest VM have not been synchronized yet.

3)
Table 5. Mapping relation from linear address to machine address of lindose

Key Structure of Process Linear Address Machine Address
ESP 0xdaacff68 0x64179f6

thread_info 0xdaace000 0x6416000
task_struct 0xdab18c50 0x65a9430

vm_area

0x54c000 - 0x56a000 0x72a0000-0x72ce000
0x56a000 - 0x56b000 0x72ce000-0x72cf000
0x56b000 - 0x56c000 0x72cf000-0x72d0000
0x572000 - 0x6f8000 ⊗
0x6f8000 - 0x6fa000 0x748b000-0x748d000
0x6fa000 - 0x6fb000 0x748d000-0x748e000
0x6fb000 - 0x6fe000 0x748e000-0x7491000

0x8048000- 0x804a000 ⊗
0x804a000 - 0x804b000 ⊗
0x9980000 - 0x99a1000 0x7491000-0x74b2000

0xb78bc000 - 0xb78bd000 ⊗
0xb78dc000 - 0xb78dd000 ⊗
0xb78dd000 - 0xb78de000 ⊗
0xbfca8000 - 0xbfcca000 ⊗

4) Process destruction. In the test, we adopt the way of covering vm_area to destroy the
malicious program. For vm_area area that has been mapped, the random data or
simple 0 is written to the corresponding area of machine memory. And for the area
that has not been mapped, we don't bother to deal with it. As the code in Lindose
address space has been cleared, Lindose will be terminated when it is scheduled next
time because of the generation of invalid opcode exception.

5.5 Overhead
1. VMM protection overhead
The overhead of VMM protection comes from the VM exit caused by page faults and the

communication between VMM and SMD. We choose three kinds of benchmark tools – the
SpecInt2006, IOZone and SysBench – to evaluate the overhead of VMM protection
mechanism. SpecInt2006 is a computer benchmark specification for CPU processing power,
and IOzone is a filesystem benchmark tool that generates and measures kinds of file operations,
while SysBench is a modular and multithreaded benchmark tool mainly used to evaluate the
database load under various system parameters. The three tools are complementary to each
other in aspects of test object and method to some degree, and have wide range and precise

5608 Lou et al.: A Multi-level Perception Security Model Using Virtualization

indicators. We could take advantage of the tools to comprehensively evaluate the overhead of
the mechanism from different aspects such as CPU processing capacity, read and write
performance of file system and so on. We use them to test and compare the time consumption
when enabling and disabling the mechanism of VMM protection. The result can be shown as
Fig. 17 that the time overhead when enabling the protection reaches to almost 9% increases
relative to the disable situation.

Fig. 17. The overhead statistic of VMM protection

Due to the read-only setting, the writing operation on certain memory for the first time will

trigger the page fault that will be enabled during the process of subsequent execution.
Therefore, the overhead is mainly generated at the beginning of the program's running. It
spends almost 9% extra overhead to complete the VMM protection that has little impact on
system performance.

2. VM protection overhead
The cost of perception mechanism is mainly derived from the two aspects of VM exit and

process address parsing. In order to evaluate the effect of the two factors on the system
performance, the relative cost of the mechanism is tested. Assuming that Tv represents the time
cost from starting the malicious process to covering the address space of it, while Tr represents
the cost in non-virtualization environment, we focus on the relative cost r that can be
expressed as (Tv -Tr)/ Tr. Fig. 18 shows the relative cost of leveraging perception mechanism to
process the malicious programs, from which we can see that the average relative cost is about
6.5% with the maximum of 10.5%. Compared with the result in non-virtualized system, the
time cost of perception mechanism has not increased significantly.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 11, November 2018 5609

Fig. 18. Bar graph of relative cost of perception mechanism

3. Synthetic overhead
The overheads, generated by six applications run respectively in original system and

CVMM, are compared by evaluating the system performance after bringing in the security
mechanism. The six applications belong to three different types: CPU-intensive, I/O-intensive
and the mixed type. The contrast of resulting overheads is shown as Fig. 19.

Fig. 19. Bar graph of relative cost of the overall system

Here we also use relative cost r to measure the difference of overheads generated between

CVMM and original system (non-virtualization system). It can be seen from the figure above
that r ranges from 6% to 10.4% for CPU-intensive operations which means that the impact of
virtualization on normal CPU operations is not significant; while r ranges from 19.7% to
22.8% for I/O-intensive operations because the I/O operations in virtualization system need to

Relative
Cost

Overhead

CPU-intensive
Operation

I/O-intensive
Operation

Mixed
Operation

5610 Lou et al.: A Multi-level Perception Security Model Using Virtualization

be intervened by VMM that deliver them to device model. And for mixed operations, r is about
23.1% due to the frequent switching between the address space of VM and VMM in
virtualization environment.

6. Conclusion
In this paper, we have proposed a multi-level perception security model using virtualization.
We start with creating the threat model based on the analysis of security risk that CVMM faces.
By setting the asymmetric address mappings and access permissions, we can either isolate the
security components and perception points from easily infected code, or prohibit them from
being modified. To protect the integrity of VMM, we establish the perceiving mechanism
from SMD to VMM based on the construction of page fault events and identification of their
type. The change of VMM memory can be perceived and verified by another system
possessing the same privilege, the SMD. For further protection of guest VM, we implement
the secure perception combining the properties of guest VM and VMM. The guest VM is able
to transmit the key information in a secure way with the support of hardware-assisted
technology. SMD can successfully restore the advanced semantics of the target process from
the low-level information it acquires which overcomes the difficulty of semantic gap. The
evaluation results show that the proposed security model could obtain the valuable
information of target system while the integrity of security perception units is ensured, and it
also could prevent VMM from being modified maliciously and identify the abnormal state of
target system effectively while the extra overhead does not increase significantly.

However, there are some restrictions of the proposed model to be broken through. The
identification of unknown abnormal behavior remains to be further improved. As we adopt the
write protection strategy of SPT to protect VMM memory, it will cause a large number of page
faults when the process first performs write operation. The VM exit handling and
communication between VMM and SMD will generate the considerable overhead, which may
also be detected and used by malicious program. In future work, we plan to introduce the
appropriate intelligent algorithms into our model to classify the intrusion behavior, and thus to
improve the identification ability and accuracy of the security mechanism. Moreover, we
consider to set the dynamic strategy of write protection according to real-time behavior of
target VM, so as to decrease the number of VM exit operation caused by page fault, and finally
leads to reduce the performance overhead of VMM protection.

References

[1] L. Zhang, X. Chen, Y. Ren and H. Li, “Kernel-level rootkit detection technology based on
VMM,” Netinfo Security, vol 4, pp. 56-61, 2015. Article (CrossRef Link)

[2] L. Zhang, S. Shetty, P. Liu and J. Jing, “RootkitDet: Practical end-to-end defense against kernel
rootkits in a cloud environment,” in Proc. of European Symposium on Research in Computer
Security (ESORICS), pp. 475-493, September 7-11, 2014. Article (CrossRef Link)

[3] S. King and P. Chen, “SubVirt: Implementing malware with virtual machines,” in Proc. of IEEE
Symposium on Security and Privacy (S&P), pp. 314-327, May 21-24, 2006.
Article (CrossRef Link)

[4] D. Anthony, E. Filiol and I. Lefou, “Detecting (and creating!) a HVM rootkit (aka
BluePill-like),” Journal in computer virology, vol 7, no. 1, pp. 23-49, 2011.
Article (CrossRef Link)

http://dx.doi.org/doi:10.3969/j.issn.1671-1122.2015.04.010
http://dx.doi.org/doi:10.1007/978-3-319-11212-1_27
http://dx.doi.org/doi:10.1109/SP.2006.38
http://dx.doi.org/doi:10.1007/s11416-009-0130-8

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 11, November 2018 5611

[5] B. Robert, J. Vetter and J. Nordholz, “The threat of virtualization: Hypervisor-based rootkits on
the ARM architecture,” in Proc. of International Conf. on Information and Communications
Security (ICICS), pp. 376-391, April 5-7, 2016. Article (CrossRef Link)

[6] O. Keisuke and Y. Oyama, “Load-based covert channels between Xen virtual machines,” in Proc.
of ACM Symposium on Applied Computing (SAC), pp. 173-180, March 22-26, 2010.
Article (CrossRef Link)

[7] J. Wu, L. Ding, Y. Wang and W. Han, “Identification and evaluation of sharing memory covert
timing channel in Xen virtual machines,” in Proc. of IEEE International Conf. on Cloud
Computing (CLOUD), pp. 283-291, July 4-9, 2011. Article (CrossRef Link)

[8] Y. Xu, M. Bailey, F. Jahanian, K. Joshi, M. Hiltunen and R. Schlichting, “An exploration of L2
cache covert channels in virtualized environments,” in Proc. of ACM workshop on Cloud
computing security (CCSW), pp. 29-40, October 21, 2011. Article (CrossRef Link)

[9] Z. Wu, Z. Xu and H. Wang, “Whispers in the hyper-space: high-bandwidth and reliable covert
channel attacks inside the cloud,” IEEE/ACM Transactions on Networking (TON), vol 23, no. 2,
pp. 603-614, 2015. Article (CrossRef Link)

[10] Y. Lin, S. Malik, K. Bilal, Q. Yang, Y. Wang and S. Khan, “Designing and modeling of covert
channels in operating systems,” IEEE Transactions on Computers, vol 65, no. 6, pp. 1706-1719,
2016. Article (CrossRef Link)

[11] P. Ranjith, C. Priya and K. Shalini, “On covert channels between virtual machines,” Journal in
Computer Virology, vol 8, no. 3, pp. 85-97, 2012. Article (CrossRef Link)

[12] H. Nemati, S. Sharma and M. Ragenais, “Fine-grained nested virtual machine performance
analysis through first level hypervisor tracing,” in Proc. of IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGrid), pp. 84-89, May 14-17, 2017.
Article (CrossRef Link)

[13] U. Tupakula, V. Varadharajan and D. Dutta, “Intrusion detection techniques for virtual
domains,” in Proc. of International Conf. on High Performance Computing (HiPC), pp. 1-9,
December 18-22, 2012. Article (CrossRef Link)

[14] L. Zhang, X. Chen, L. Liu and H. Li, “A kernel integrity protection technology based on virtual
machine,” Journal of University of Electronic Science & Technology of China, vol 44, no. 1, pp.
117-122, 2015. Article (CrossRef Link)

[15] L. Zhang and X. Kong, “Embedded trusted computing environment build based on QEMU virtual
machine architecture,” in Proc. of International Symposium on Computational Intelligence and
Design (ISCID), vol 1, pp. 193-196, December 13-14, 2015. Article (CrossRef Link)

[16] M. Kumara and C. Jaidhar, “Virtual machine introspection based spurious process detection in
virtualized cloud computing environment,” in Proc. of International Conf. on Futuristic Trends on
Computational Analysis and Knowledge Management (ABLAZE), pp. 309-315, February 25-27,
2015. Article (CrossRef Link)

[17] T. Win, H. Tianfield and Q. Mair, “Virtualization security combining mandatory access control
and virtual machine introspection,” in Proc. of IEEE/ACM International Conf. on Utility and
Cloud Computing (UCC), pp. 1004-1009, December 8-11, 2014. Article (CrossRef Link)

[18] T. Zhang and R. Lee, “Monitoring and attestation of virtual machine security health in cloud
computing,” IEEE Micro, vol 36, no. 5, pp. 28-37, 2016. Article (CrossRef Link)

[19] I. Studnia, E. Alata, Y. Deswarte, M. Kaâniche and V. Nicomette, “Survey of security problems in
cloud computing virtual machines,” in Proc. of Computer and Electronics Security Applications
Rendez-vous (C&ESAR 2012), pp. 61-74, November 20-22, 2012. Article (CrossRef Link)

[20] R. Wojtczuk, “Subverting the Xen hypervisor,” in Proc. of Black Hat USA, August 2-7, 2008.
Article (CrossRef Link)

[21] J. Rutkowska and A. Tereshkin, “Bluepilling the xen hypervisor,” in Proc. of Black Hat USA,
August 2-7, 2008. Article (CrossRef Link)

[22] C. Chen, M. Wu, B. He, X, Zheng, C. Hsing and H. Sun, “A methodology for hook-based kernel
level rootkits,” in Proc. of International Conf. on Information Security Practice and Experience
(ISPEC), pp. 119-128, May 5-8, 2014. Article (CrossRef Link)

http://dx.doi.org/doi:10.1007/978-3-319-50011-9_29
http://dx.doi.org/doi:10.1145/1774088.1774125
http://dx.doi.org/doi:10.1109/CLOUD.2011.10
http://dx.doi.org/doi:10.1145/2046660.2046670
http://dx.doi.org/doi:10.1109/TNET.2014.2304439
http://dx.doi.org/doi:10.1109/TC.2015.2458862
http://dx.doi.org/doi:10.1007/s11416-012-0168-x
http://dx.doi.org/doi:10.1109/CCGRID.2017.20
http://dx.doi.org/doi:10.1109/HiPC.2012.6507491
http://dx.doi.org/doi:10.3969/j.issn.1001-0548.2015.01.020
http://dx.doi.org/doi:10.1109/ISCID.2014.47
http://dx.doi.org/doi:10.1109/ablaze.2015.7155003
http://dx.doi.org/doi:10.1109/UCC.2014.165
http://dx.doi.org/doi:10.1109/MM.2016.86
https://hal.archives-ouvertes.fr/hal-00761206
http://blackhat.com/presentations/bh-usa-08/Wojtczuk/BH_US_08_Wojtczuk_Subverting_the_Xen_Hypervisor.pdf
https://invisiblethingslab.com/resources/bh08/part3.pdf
http://dx.doi.org/doi:10.1007/978-3-319-06320-1_10

5612 Lou et al.: A Multi-level Perception Security Model Using Virtualization

[23] S. Kim, J. Park, K. Lee, I. You and K. Yim, “A brief survey on rootkit techniques in malicious
codes,” Journal of Internet Services and Information Security, vol 3, no. 4, pp. 134-137, 2012.
Article (CrossRef Link)

[24] R. Lou, Y. Guo and Y. Song, “Research on trusted boot technology based on collaborative
virtualization system,” Application Research of Computers, vol 31, no. 10, pp. 3125-3130, 2014.
Article (CrossRef Link)

[25] K. Wang, Z. Li, F. Huang and F. Yan, “HyperSpector: VMM dynamic trusted monitor based on
UEFI,” Chinese Journal of Network and Information Security, vol 2, no. 12, pp. 47-55, 2016.
Article (CrossRef Link)

[26] J. Yu, P. Zhou, Y. Wu and C. Zhao, “Virtual machine replay update: improved implementation for
modern hardware architecture,” in Proc. of International Conf. on Software Security and
Reliability Companion (SERE-C), pp. 1-6, June 20-22, 2012. Article (CrossRef Link)

[27] H. Patel, Y. Patel and H. Trivedi, “Auditing and monitoring of virtual machine instances of cloud,”
International Journal for Scientific Research & Development (IJSRD), vol 1, no. 2, pp. 338-341,
2013. Article (CrossRef Link)

[28] S. Oikawa and J. Kawasaki, “Simultaneous virtual-machine logging and replay,” Simultaneous
Virtual-Machine Logging and Replay, vol 6, no. 4, pp. 1128-1138, 2011. Article (CrossRef Link)

[29] L. Catuogno, A. Castiglione and F. Palmieri, “A honeypot system with honeyword-driven fake
interactive sessions,” in Proc. of IEEE International Conf. on High Performance Computing &
Simulation (HPCS), pp. 187-194, July 20-24, 2015. Article (CrossRef Link)

[30] N. Al-Dabagh and M. Fakhri, “Monitoring and analyzing system activities using high interaction
honeypot,” International Journal of Computer Networks and Communications Security, vol 2, no.
1, pp. 39-45, 2014. Article (CrossRef Link)

[31] R. Tiwari and A. Jain, “Design and analysis of distributed honeypot system,” International
Journal of Computer Applications, vol 55, no.13, pp. 20-23, 2012. Article (CrossRef Link)

[32] P. Pisarčík and P. Sokol, “Framework for distributed virtual honeynets,” in Proc. of ACM
International Conf. on Security of Information and Networks (SIN), pp. 324-329, September 9-11,
2014. Article (CrossRef Link)

[33] J. Qin, B. Shi and B. Li, “NEM: A new in-vm monitoring with high efficiency and strong
isolation,” in Proc. of International Conf. on Smart Computing and Communication (SmartCom),
pp. 396-405, December 10-12, 2017. Article (CrossRef Link)

[34] B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Giffin and W. Lee, “Virtuoso: Narrowing the semantic
gap in virtual machine introspection,” in Proc. of IEEE Symposium on Security and Privacy (SP),
pp. 297-312, May 22-25, 2011. Article (CrossRef Link)

[35] Y. Liu, Y. Xia, H. Guan, B. Zang and H. Chen, “Concurrent and consistent virtual machine
introspection with hardware transactional memory,” in Proc. of IEEE, International Symposium
on High Performance Computer Architecture (HPCA), pp. 416-427, February 15-19, 2014.
Article (CrossRef Link)

[36] R. Kemmerer, “Shared resource matrix methodology: An approach to identifying storage and
timing channels,” ACM Transactions on Computer Systems (TOCS), vol 1, no. 3, pp. 256-277,
1983. Article (CrossRef Link)

[37] N. Kaur and A. Bindal, “A complete dynamic malware analysis,” International Journal of
Computer Applications, vol 135, no. 4, pp. 20-25, 2016. Article (CrossRef Link)

http://pdfs.semanticscholar.org/9a1a/913dbc2f8d3fbf5175e5fae7a8e4a304cb24.pdf
http://dx.doi.org/doi:10.3969/j.issn.1001-3695.2014.10.060
http://dx.doi.org/doi:10.11959/j.issn.2096-109x.2016.00133
http://dx.doi.org/doi:10.1109/SERE-C.2012.26
http://www.ijsrd.com/Article.php?manuscript=IJSRDV1I2069
http://dx.doi.org/doi:10.2197/ipsjjip.19.400
http://dx.doi.org/doi:10.1109/HPCSim.2015.7237039
http://connection.ebscohost.com/c/articles/97122209/monitoring-analyzing-system-activities-using-high-interaction-honeypot&ie=utf-8&sc_us=13435691535906279826
http://dx.doi.org/doi:10.5120/8815-2499
http://dx.doi.org/doi:10.1145/2659651.2659685
http://dx.doi.org/doi:10.1007/978-3-319-73830-7_39
http://dx.doi.org/doi:10.1109/SP.2011.11
http://dx.doi.org/doi:10.1109/HPCA.2014.6835951
http://dx.doi.org/doi:10.1145/357369.357374
http://dx.doi.org/doi:10.5120/ijca2016908283

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 11, November 2018 5613

Rui Lou was born in 1989. He received the M.S. degree in Computer Science and
Technology from Information Engineering University in 2014, and B.A. degree from
Harbin Institute of Technology in 2011. He is currently a Ph.D. Candidate in Computer
Science and Technology in State Key Laboratory of Mathematical Engineering and
Advanced Computing. His research interests include computer architecture, system
virtualization, and computer security.

Liehui Jiang was born in 1967. He is currently a professor and Ph.D. Supervisor with the
State Key Laboratory of Mathematic Engineering and Advanced Computing, Zhengzhou,
China. His main research interests include computer architecture, reverse engineering and
security. He has published over 100 refereed papers. He is a senior member of China
Computer Federation.

Rui Chang was born in 1981. She received the Ph.D. degree from Information
Engineering University in 2017, the M.S. degree from Wuhan University of Technology in
2007, and B.A. degree from Zhengzhou University in 2003. She is an associate Professor
now in State Key Laboratory of Mathematical Engineering and Advanced Computing. Her
research interests include computer architecture, embedded system security, access control,
and formal method.

Yisen Wang was born in 1990. He received the M.S. degree in Computer Science and
Technology from Information Engineering University in 2015, and B.A. degree from
Tianjin University in 2012. Now he is a Ph.D. Candidate in Computer Science and
Technology in State Key Laboratory of Mathematical Engineering and Advanced
Computing. His research interests include computer architecture, internet of things security,
and deep learning.

