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Abstract 
 

Virtualization technology has been widely applied in the area of computer security research 
that provides a new method for system protection. It has been a hotspot in system security 
research at present. Virtualization technology brings new risk as well as progress to computer 
operating system (OS). A multi-level perception security model using virtualization is 
proposed to deal with the problems of over-simplification of risk models, unreliable 
assumption of secure virtual machine monitor (VMM) and insufficient integration with 
virtualization technology in security design. Adopting the enhanced isolation mechanism of 
address space, the security perception units can be protected from risk environment. Based on 
parallel perceiving by the secure domain possessing with the same privilege level as VMM, a 
mechanism is established to ensure the security of VMM. In addition, a special pathway is set 
up to strengthen the ability of information interaction in the light of making reverse use of the 
method of covert channel. The evaluation results show that the proposed model is able to 
obtain the valuable risk information of system while ensuring the integrity of security 
perception units, and it can effectively identify the abnormal state of target system without 
significantly increasing the extra overhead. 
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1. Introduction 

Virtualization has provided a new and effective way to protect the OS due to its particular 
advantages such as environmental isolation, underlying control, resource integration, dynamic 
configuration and so on. It can provide many kinds of security services, for example, the 
intrusion detection, access control, system kernel protection, etc. It is a hot topic to utilize the 
virtualization technology in research of system security. 

With its advantages in protecting computer OS, virtualization also exposes the system to 
some new risk. There are mainly four types of security issues in virtualization environment: 1) 
Internal tempering in virtual machine (VM): the various forms of kernel-level Rootkits which 
can steal information and break the system in the state that is not easily perceived [1,2]. 2) 
VM-based rootkit: SubVirt [3], BluePill-like [4] and Vitriol [5]. 3) VM covert channel: 
including the load-based covert channel [6], the sharing memory covert timing channel [7], the 
L2 cache covert channels [8] and some other types [9,10,11]. 4) Attacks against VMM: 
including maliciously modifying and nesting the VMM [12]. 

To address the security problems existing in virtualization system, some studies combine 
virtualization with other protection technologies in security design and implementation. 
Tupakula et al [13] proposed an intrusion detecting architecture taking into account the 
security policies of virtual domains as well as the specific features of the virtual machines to 
detect the attacks, with the important components of policy enforcement and behavior capture 
engine integrated into the VMM. CTVM [14] is a kernel protection framework that adopts the 
hardware-assisted virtualization technology of extended page table to create the isolated 
operating environment for untrusted modules, and then monitors them during the runtime to 
protect the kernel integrity of guest VM. Zhang et al [15] presented a scheme of embedded 
trusted computing environment based on virtual machine architecture named QEMU, wherein 
the functions of trusted cryptographic modules are simulated by software, thus with no other 
additional hardware. Kumara et al [16] presented a virtual machine introspection (VMI) based 
on malicious process detection approach for VM, which extracted the high level information 
such as system call, opened known backdoor ports from introspected memory to identify the 
spurious process. Win et al [17] introduced the mandatory access control (MAC) to protect the 
in-VM monitoring and the hypervisor, aiming at finally protect the guest VM against attacks 
with relatively ideal overhead. 

Although the methods mentioned above have increased the security of OS by drawing 
support from virtualization technology, there are still some deficiencies to be improved. 
Firstly, with insufficient considerations on the particularity of virtualization system in aspects 
of execution mode, data flow and address isolation, risk models of virtualization system are 
built too simply to describe the threats it faces [18,19]. Secondly, with the appearance of 
VMM attacking techniques such as the direct memory access coverings [20] and nested 
virtualization [21], the assumptions that the VMM and security perception units are safe 
enough, which most current designs of protective structure generally make, are no longer 
tenable. Thirdly, the combination between security mechanism and virtualization technology 
is not fully integrated. With the lack of security channel, the existing interactive way between 
guest VM and VMM is single and easy to be detected and utilized by malicious program 
[22,23], which reflects the ineffective cooperation between VM and VMM. 

On the basis of former research [24], this paper designs and extends the function of I/O 
process machine (IOPM) in collaborative-VMM (CVMM) to construct the security 
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management domain (SMD), and then builds a multi-level perception security model in 
virtualization system aiming at dealing with the problems mentioned above. Related work is 
firstly listed in Section 2. Then the attack model is constructed based on the analysis of risk 
assumptions in Section 3. The specific design and implementation of the security model is 
explained in Section 4. Section 5 carries out the evaluation of the model and Section 6 draws 
the conclusion of the paper. 

2. Related Work 
This paper studies the threats of malicious activities to virtualization system itself including 
VM and VMM, then focuses on the design and implementation of a security protection model 
based on virtualization, which can be categorized as the research of VM intrusion detection. 
The main idea of intrusion detection based on VM is to depart the security perception unit 
from target system using the isolation property of virtualization so that the unit can monitor the 
intrusion behavior independently, for instance the HyperSpector [25], which reduces the risk 
points in distributed system by applying virtualization. The current research mainly focuses on 
the following aspects: 

1) Logging and Auditing. For the attackers can modify the syslog in traditional system 
when they get the control of system, it is no longer reliable, depending on which the 
intrusion detection system can do the analysis of malicious program. Dealing with the 
problem, ReVirt [26] gets the logger to operate in a VM isolated from other processes, 
thus equips the VM with the ability of auditing. The advanced auditing adopts the 
similar idea to establish a privileged VM to collect audit logs for each protected VM 
[27]. Oikawa et al [28] proposed the framework that performs simultaneous logging 
and replay in two isolated VMs running on the same host. 

2) Decoy and Interference. With lower costs and risks comparing to physical honeypot, 
the honeypot system constructed in VM can log the completed activities of malicious 
program in the isolated position. It is also capable of quickly recovering relying on 
the backups even if the VM has been broken into. However, the virtual honeypot can 
be perceived by attackers because it cannot provide the completely real environment 
of system, and the information provided by a single or multiple virtual honeypots is 
not enough to reflect the whole feature of intrusion. For the former, the highly 
interactive honeypots are proposed to give attackers the adequate feedbacks of 
information [29,30]. For the latter, the distributed honey-net system is set up to 
provide more accurate attacking report under circumstance of highly cooperating 
between virtual honeypots [31,32]. 

3) Out-of-VM Monitoring. Integrating the advantages of host-based and network-based 
intrusion detection systems, some monitoring systems are proposed to make the 
intrusion detection components do the monitoring work out of target VM, thus the 
components can possess a higher security level. However, two problems that have 
driven the study on modified out-of-VM monitoring are the extra cost produced by 
exchanging the control when monitoring the calls, and the semantic gap between 
VMM and target OS which makes the internal events of VM hard to be 
comprehended by detection component. To solve these two problems, NEM adopts a 
kind of structure called secure in-VM monitoring to keep the performance advantages 
[33]. Virtuoso uses a novel approach for automatically creating introspection tools 
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for security applications [34]; and TxIntro implements the detecting and identifying 
about target VM merely by retrofitting hardware events [35]. 

3. Threat Model 

3.1 Assumption 
Virtualization deepens the software stack in the vertical direction of the system. It changes not 
only the way OS accesses the resources, but also the trusted computing base (TCB) and 
executing mode of original system. Purely from the perspective of the abstract function that 
virtualization provides, it could be found that the use of virtualization does not improve the 
security of computer system because the VM only represents as the logic example of the 
underlying physical machine, the threat that the traditional computer system faces still exist in 
the VM. Besides, it can be seen, by the analysis of the security issues existing in virtualization 
system in section 1, that the attacker could have more objects to attack. In other words, not 
only the OS itself but also the VM, VMM and privileged VM are all in risk of being attacked. 
Since the virtualization system suffers a greater risk of attack, a higher security requirement is 
needed. Taking comprehensive consideration of the security risks and the minimum 
conditions under which the proposed mechanism could run, we make assumptions of the threat 
and establish the attack model of CVMM. According to the basic security structure shown in 
Fig. 1, CVMM, whose TCB contains the hardware and SMD, provides three forms of security 
services—integrating within VMM, deploying inside SMD and operating in VM system in a 
front-end way. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Basic security structure of CVMM 
 

Assumptions of security preconditions and possible risks for CVMM are made as follows: 
1) CVMM's TCB consisting of the hardware and SMD, excluding VMM, is safe enough. 

The security services in the model would fail if TCB is destroyed. 
2) Normally, the data structures in guest OS are reliable depending on which VMM and 

SMD can conclude the state of guest system. Even if the guest is invaded and the data 
structures are destroyed, and consequently the malicious programs bypass the 
security policies relying on them and influence the ability of VMM and SMD that 

Security 
Perception

Unit VMM 

SMD

Security 
Perception

Unit

TCB VM

Front-end Security 
Perception Unit

GUEST OS

APP

Hardware

Security 
Policy



5592                                                                   Lou et al.: A Multi-level Perception Security Model Using Virtualization 

monitoring information inside the guest, the security of VMM and SMD is still 
guaranteed and they can continue to scan the key memory and capture the device 
access operations.  

3) By means of utilizing the covert channel, the way of perception between guest VM 
and VMM has no obvious abnormal features that can be perceived by malicious 
programs so that it would not trigger the escape and anti-detection behaviors of them. 

4) With the threats of illegal modifications by malicious guests and VMBR attack, VMM 
itself is not safe. 

5) SMD is a tidy Linux system and possesses the smaller TCB because it has swept away 
an amount of irrelevant code. Isolated from VM and VMM, SMD would not be 
influenced by malicious programs. 

6) SMD is in running state all the time. And any operation on key area of VMM's 
memory would be captured by it to ensure safety of VMM. 

3.2 Attack model 
As shown in Fig. 2, the data flow transmission in CVMM would go through four parts. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Data flow in CVMM 
 

The assumptions are made that the security perception unit inside VM—SUvm consists of the 
code and data, while the library it relying on during operating is defined as SUlib. SUvm is used 
to initiatively monitor the events E happening in internal VM. The hook He has been set up 
between the start and the end point so that any event e∈E would be intercepted to transmit the 
control flow to perception unit. Process switching or inter-domain communication can 
implement this transmission. The symbol Ce expresses the context information of guest OS 
that He captures, while I(Ce) refers to the informing and calling to SUvm initiated by He. SUvm 
sends the processing request Sr(Ce) to VMM perception unit SUvmm, and after that the policy 
request Tr(Ce) would be delivered to SUlib for decisions. In the reverse direction of data flow, 
Trsp(Ce) expresses the responding from SUlib and Srsp(Ce) answers the request sent by SUvm. 
Finally, SUvm responds to hook He with R(Ce) which must be enforced including the update of 
system state and modification on execution flow. 

The risks may exist in each procedure during the data and control flow delivery. Fig. 3 
indicates the possible cases that may be threatened and attacked as shown by dotted lines. 
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Fig. 3. Attacking model of CVMM 
 

The risky links that are vulnerable to malicious programs are as follows: 
1) Bypassing He which makes I(Ce) unable to be called. 
2) Modifying Ce while it is being delivered to SUvm so that SUvm obtain the error 

messages. 
3) Disturbing SUvm by directly attacking it. 
4) Attacking SUvmm by malicious means of DMA covering or VMBR. 
5) Damaging SUlib which leads SMD to make wrong decisions. 
6) Destroying R(Ce) so that He cannot execute the correct feedback. 

4. Design and Implementation 
This section presents the design and implementation of the key points from section 4.1 to 4.3, 
and then describes and analyzes the entire security model in section 4.4. 
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The isolation measures should meet the following constraints: 
1) For preventing VMM from damaging SMD's integrity, the address space of SMD 

cannot be accessed by VMM. 
2) SMD can walk through the entire address space. It possesses the reading and writing 

privileges on VMM code mapped to its space, but no executing permission. Thus 
SMD is able to read and operate the related contents in VMM (for VMI), and avoid 
the influence from VMM code at the same time. 

3) The perception unit possesses only the reading and executing authorities in VM's 
address space to prevent from being modified by malicious code in VM, while it 
maintains all authorities in VMM's address space. 

4) VMM jump code cannot be modified by forbidding the writing authority on its own in 
VMM's address space. SMD is able to conduct the reading and writing operations on 
VMM jump code mapped to its address space, without any executing authority. It can 
prevent VMM jump code from disturbing SMD itself. 

Setting the page properties of the components with R (reading), W (writing) and X 
(executing) to satisfy the constraints listed above, we establish the enhanced isolation 
mechanism to ensure the safety of security units by controlling the address mapping and page 
property authorizing. Fig. 4 expresses the mechanism in detail. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Schematic diagram of the unit isolation and authority setting 

4.2 VMM protection 
The guest VM running on VMM or malicious programs activating inside VMM may operate 
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from) non-privileged mode, the modifying operation on VMM can only be accomplished in 
privileged mode—that is to say, all the operations targeting at VMM's memory must be carried 
out by VMM's own routines, for instance the initialization and exit handling. Besides, the code 
and data of VMM cannot be accessed by peripherals in DMA way to defend against the DMA 
attacking. 

It is assumed that virtualization system can be defined as S = (V, P, M) in which V, P and M 
respectively represent VMM, malicious program and VMM's memory. First of all, S must 
possess three properties—control flow integrity, modularity and atomicity. The control flow 
integrity denotes the consistency between source code semantics and actual flow when V is 
processing. The modularity expresses that V is composed of the initialization function init() 
and a series of exit handling routines ehr1(),…,ehrk(). The atomicity refers that init() will run 
independently before other programs, as well as the routines ehr1(),…,ehrk(). The three 
properties have been kept during the design and implementation process of CVMM. Therefore 
it possesses the sequential character Seq(S), which means that there would be four types of 
states appearing in exclusive mode during running process of S—that is to say, S executes 
either initializing and exit handling procedures in privilege mode, or the guest VM and 
attacking codes in non-privilege mode. The state transition of S is shown in Fig. 5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. State transition of S 
 

Here are two sequential programs defined as m and n, and the symbol * expresses the 
associated and exchangeable relationships, thus m*n refers that m and n are running in 
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If the memory integrity of VMM has been guaranteed, M can be modified only in privilege 
mode. Assuming that neither Cond1 nor Cond2 is satisfied, there must exist a certain variable 
(or code) v which leads init(v) or ehri(v) not to satisfy the ( )Mψ so that M can be modified in 
non-privilege mode, which is in contradiction with the premise. So the sufficiency is proved. 

Before the proof of necessity is given, the assumption that S possesses the property of 
MAC that is built in M has been made firstly. As previously stated, any access to M by 
malicious program P in non-privilege mode will trigger the routines of exit handling because 
of violating the condition ( )Mψ . Therefore, P will satisfy ( )Mψ if S possesses MAC property. 

Proof of necessity:  
If Cond1 and Cond2 are both tenable, init(&) and 1(&) (&)kehr ehr∗ ∗ will satisfy the 

condition ( )Mψ . Simultaneously assuming that S possesses MAC property, P(&) also 
conforms to ( )Mψ . According to definition 1 and inductive method, ( )Mψ ought to be 
satisfied by the sequential programs 1(&); ( ){ (&) (&) (&)}kinit while true P ehr ehr∗ ∗ ∗ . It means 
that S can satisfy the condition ( )Mψ . So the necessity is proved. 

It can be seen from the proof above that the memory integrity of S can be ensured if it 
possesses MAC property. What's more, MAC property requires that the memory access in 
non-privilege mode should be limited by MAC mechanism supported by hardware and be 
stored in data field of VMM or other privileged systems. In hardware-assisted virtualization, 
VM exit is an architecture event that cannot be bypassed, thus provides a very natural MAC 
condition. 

This paper establishes the perceiving mechanism from SMD to VMM based on the 
distinctive parallel structure of CVMM that makes SMD can perceive the event modifying the 
VMM's memory and verify its validity independently even if VMM itself has been attacked. 
The main idea of the mechanism is to set the VMM's kernel area to read-only property by 
using page protection mechanism, which will lead to the page fault when modifying on that 
area occurs. By expanding the mechanism of informing SMD into initial page fault handlers, 
SMD can verify the modification event to decide whether it is normal during the pause of 
VMM before SMD returns the decision. Fig. 6 shows the perceiving mechanism to protect 
VMM. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Protection of VMM's memory integrity based on parallel perceiving 
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events will occur from VM's initial running stage on which lead VM to exit and transfer the 
control to VMM, while SMD also has the chance to do further analysis of the events. Due to 
the writing protection policy and the unsynchronized features of SPT entry and VM's page 
table entry, there exist four types of page faults during the running process of VM, which need 
to be handled differently:  

1) The page fault caused by the first legal writing operation on VM's legal memory area 
because of the violation of writing protection. In this case, the corresponding R/W bit 
will be set to 1 so that guest VM could continue to do the writing operations. 

2) The page fault caused by the legal operation whose corresponding target SPT entry is 
empty. Due to swapping memory pages of VMM or TLB flush operation, the SPT 
entries corresponding to legal memory of guest VM may be deleted, which will lead 
to page fault when writing operations on these areas occur. For this page fault type, 
the corresponding entry will be added in SPT. 

3) The page fault caused by missing pages within guest VM. Similar to type 2), a page 
fault will occur because of swapping memory pages of VM or TLB flush operation. 
For this type, the guest VM performs the conventional page fault handling. 

4) The page fault caused by malicious writing operations which violate the writing 
protection. Owing to the writing protection strategy, the first writing operation of 
malicious program will still be in violation of this strategy, even if it has added the 
page table entry to SPT that could make itself able to access VMM memory in some 
way. Focusing on this type, we'll replace the instruction corresponding to Guest.EIP 
with NULL, and then returns to VM's execution; otherwise the VM will repeatedly 
execute the instruction and continue to generate page fault events. 

As the detection of page fault type is achieved and supported mainly by accessing to both 
SPT and VM page tables, SMD should have the ability to acquire them. Considering that SPT 
and VM page table are respectively pointed to by CR3 in VMM address space and in VM 
address space, we parsed the virtual machine control structure (VMCS) to enter into the 
host-state area and guest-state area under VMCS, where the Host_CR3 and Guest_CR3 can be 
acquired. 

4.3 Secure perception between VM and VMM 
It is beneficial for system security to improve the CVMM's ability of self-protection by 
combining the advances of VM's identification and VMM's supervision. Before attacks are 
actually generated, the malicious program will present some unusual behaviors such as 
altering or deleting files, creating processes and so on. This stage can be called threat-upstream. 
In this stage, security unit deployed in guest VM is able to perceive the abnormal activities in 
advance. Afterwards, the malicious program has to operate the underlying resources mapped 
form the seniors when they launch attacking, for example the access to virtual memory and 
device. This stage correspondingly can be called threat-downstream. Since the operations have 
triggered the preset conditions of VM exit, VMM can capture them to do the further analysis in 
this stage. 

The method of protection based on perception is applied as follows: the guest VM reports 
the suspicious programs to VMM in threat-upstream; and then VMM obtains the information 
to do the follow-up processing in threat-downstream. An important condition shall be satisfied 
at first that VM can send the information to VMM in a way as covert as possible. According to 
the classical descriptions about existence conditions of covert channel [36], this paper 
summarizes the basic requirements to build storage channel combining with the properties of 
CVMM. And all of them have been met during the implementation. 
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First, both VMM and the guest VM shall have the ability to access some particular chunks 
of shared memory. To meet the requirement, a certain memory area R is partitioned by 
modifying the VM's and VMM's page tables and memory management algorithms that locates 
in physical address space. After being set as reserved area in memory management algorithms, 
R can be accessed by both VM and VMM but cannot be allocated by them, as shown in Fig. 7. 

 
     
 
 
 
 
 
 
 
 

Fig. 7. Diagram of shared memory R 
 

Secondly, the guest VM can modify the data in R. As the shared memory R is established, 
the guest VM has already possessed the ability to access and operate R. 

Thirdly, VMM must be capable of perceiving the change of data in R that is the key point of 
building storage channel. With the help of the instruction VMCALL provided by the processor 
that support virtualization, VM can actively hand over the control to VMM so that VMM can 
make deeper study on the events happening in VM. During the normal running of guest VM, 
VMCALL will not be triggered unless VM needs to communicate with VMM. Once detecting 
VMCALL, VMM will take out the secret information from R written by VM. This process can 
be shown as Fig. 8. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. Storage covert channel between VM and VMM 
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As mentioned above, this paper has established the secure perception mechanism between 
VM and VMM by making reverse use of the method of covert channel. The operating process 
of the mechanism can be described as follows. When the guest VM perceives the abnormal 
operation, the security perception unit will not directly clean it up to avoid triggering the 
anti-detection behavior of the malicious program. Now, the guest VM writes the particular 
information such as process identifier (PID) or extended stack pointer (ESP) to shared 
memory R and then executes VMCALL instruction to make the control trap into VMM. After 
that, VMM takes out the information and delivers it to SMD to do further analysis. Finally, 
SMD returns the processing result to VMM that will directly ruins the low-level resources 
corresponding to the malicious program afterwards. The whole mechanism can be shown as 
Fig. 9. 

 
 

 

 

 

 

 

 

 

 

Fig. 9. Diagram of covert perceiving mechanism 
 
 
The target of secure perception is to handle the malicious program in VM. The 

precondition is to comprehend the high-level semantics of guest VM, which SMD should 
restore from the information it acquires. We chose the Linux release version Fedora 13 as the 
VM system of which the process information is maintained by the structure task_struct. So the 
secret information transmitted from secure channel provided by VM ought to make task_struct 
be parsed. As the system stack of process and the structure thread_info locate in the continuous 
two pages and ESP points to the top of system stack, we can calculate the location of 
thread_info through ESP and then leverage the thread_info()->task to find task_struct. 
Considering that SPT of the process maintains the mapping relation from guest virtual address 
to host physical address, we can locate the ESP's position in machine memory according to the 
transmitted ESP and mapping relation, and then parse the thread_info and task_struct to 
acquire three key structures: process context, signal queue and the virtual address space, as Fig. 
10 shows. 
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Fig. 10. Restoration of high-level semantics of target process 
 

On the basis of obtaining the key information of process, we implement three types of 
processing strategies: ①Modifying thread.eip of task_struct to make it point to the invalid 
address or to a piece of code containing the terminating operation, which leads guest OS itself 
to terminate the process; ②Adding a termination signal SIGKILL to signal queue so that OS 
could naturally terminate the process; ③Covering the address space of process forcibly from 
VMM layer in case of invalidation of previous two strategies. The vm_area describes the 
linear address space of process, so we could leverage task_struct->mm->mmap to locate the 
position of it in machine memory and then cover the original data, thus eliminate the malicious 
code fundamentally. 

4.4 The multi-level perception security model 
The preceding sections have demonstrated analysis and solutions of some security problems in 
virtualization system: 1) For isolation of security perception units, an enhanced isolation 
mechanism is set to make risk components possess the minimum legal authorities to protect 
the units from risk environment. 2) For the invalid assumption of VMM's security, a 
perceiving mechanism from SMD to VMM based on the distinctive parallel structure of 
CVMM is established to ensure the integrity of VMM's memory. 3) For the weak capability of 
interaction between VM and VMM in security systems, a covert storage channel is constructed 
to make the guest VM capable to send the sensitive information to VMM for further analysis in 
private. The security protection model this paper designs can be shown as Fig. 11. 
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Fig. 11. Diagram of the multi-level perception security model 
 

The structure and characteristics of the protection model are described as follows. 
1) In the whole protection system, VMM provides the virtualization capability and SMD 

offers the security services. VMM and SMD have the same highest privilege. They 
possess the separate processors and memory, and they are physically isolated by 
means of resource partitioning.  

2) The perception units are respectively deployed in VM, VMM and SMD so that VM is 
able to initiatively deliver the sensitive information to VMM. Depending on the 
information, VMM and SMD can block malicious behaviors in a higher privilege. 

3) The hooks are set, focusing on the key resources and paths. Therefore, VMM can 
monitor the activities of malicious program in the view of underlying resources and 
gain the control in time when the attack on senior resources occur.  

4) The units of VMI, security policy and compulsory execution are used to analyze and 
identify the behaviors in guest VM. If malicious behaviors are figured out, related 
operations will be prevented from executing. 

5) With the same privilege as VMM, SMD can access all the memory and enable VMI 
unit to get the state of VM directly to reduce the performance overhead caused by 
VMM's frequent interventions in the guest VM. 

6) The unit of VMM integrity protection in SMD can ensure VMM's safety by verifying 
the events of memory modifications. 

The proposed model can effectively enhance the capability of risk resistance of the 
virtualization system. The enhanced isolation mechanism can ensure that perception unit in 
VM space would not be modified, thus prevent it against the risk of being tempered with by 
malicious program. It also can block out the interference that SMD suffered from VMM, and 
make it provide sustained and effective security services. The VMM protection mechanism 
ensures the integrity of VMM, including the security of perception unit in VMM, which can 
effectively guard against the attack risk to VMM. The secure perception between VM and 
VMM can make VM covertly deliver the key information of malicious program to security 
components outside and then eliminate it from underlying layer, which can avoid the risk of 
triggering the anti-detection of malicious program. 
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Fig. 12. Execution flow diagram of the security protection model 
 

The execution flow of the protection model is shown as Fig. 12 and described in the 
following. Firstly, VMM sets the hooks in the key paths and resources points and they will not 
be triggered during the normal executing process of VM. However, VMM will gain the control 
in two cases. One is that the operation in VM has broken the rules of VMM protection that may 
be generated by malicious behavior. The other is that VM reports the internal information to 
VMM actively via secure channel when suspicious behavior appears. After gaining the control, 
VMM sends the acquired information to VMI unit set in SMD via perception interface. The 
VMI unit can restore the senior semantic information for which the security policy unit will do 
further verification to identify whether the corresponding behavior conforms to the rules or not. 
The processing result for the system behavior needs to be enforced by VMM that either allows 
VM to continue to execute or prohibits the current operation. With the help of the security 
policy unit, VMM integrity protection unit will monitor the memory operations all through the 
system's running to identify and then prevent the malicious behavior from tampering with 
VMM. 

5. Evaluation 

5.1 Work environment 
1. Implementation environment 

We have implemented the perception security model shown in Figure 11 on CVMM. The 
hardware and software environment of implementation is shown in Table 2 and Table 3. 

 
Table 2. Hardware environment 

Sort Description 
Processor Intel Core i5 650M @3.2GHz 
Chipset Intel Q57 
Memory 4GB DDR3 1333MHz 
Hard disk 500GB 7200 RPM SATA 
Graphics ATI Radeon HD 4650 
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Table 3. Software enviromment 
Sort Version 

VMM CVMM(Xen-based Sandbox) 
IOPM Fedora 13(kernel: Linux 2.6.38) 
VM ttylinux(kernel: Linux 2.6.38) 

Device mode Qemu-dm 2.2 
Security software ClamAV 0.99.2 

 
This section will carry out functional test on VMM protection and VM protection, and 

evaluate the system overhead. The test of VMM protection shows that the security system can 
detect it and make decisions timely when the attack on VMM area occurs to ensure the 
integrity of VMM. The test of VM protection shows that security mechanism is able to acquire 
the key information through secure channel and successfully parse out the high-level 
semantics of malicious process to eliminate it and protect VM. Finally, we evaluate the 
overhead of these two mechanisms, and then evaluate the performance of perception security 
model when the proposed two mechanisms are both applied in CVMM simultaneously. 

2. Prototype platform description 
The proposed model is implemented based on CVMM platform which provides the support 

of hardware-assisted virtualization technology (VT-x, VT-d, etc.). CVMM is a specific 
implementation of Xen-based sandbox and a virtualization platform with a small amount of 
code. The architecture of CVMM is very different from traditional virtualization system, as 
shown in Fig. 13. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13. CVMM architecture 
 

CVMM converts an ordinary VM into a privileged IOPM by the way of hardware 
partitioning, allowing it to directly control parts of hardware resource. IOPM controls one 
application processor (AP) and runs a modified Fedora inside. It applies Qemu-dm to 
complete the device virtualization and provide the virtual resource associated with devices. 
VMM controls the bootstrap processor (BSP) and other APs, provides VCPU resource for VM 
and manages the memory allocation of system, and realizes the virtualization of processor and 
memory. IOPM interacts with the VMM through inter-processor interrupt (IPI) and shared 
memory. IOPM possesses the same privilege as VMM and directly runs on hardware, forming 
the parallel collaborating structure. Therefore, it not only avoids frequent privilege switching, 
but also changes the way of I/O processing that uses Qemu-dm to complete the I/O request of 
guest VM. 
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CVMM makes full use of characteristics of multi-processor architecture and hardware 
virtualization to manage and allocate virtual resource. It can improve the efficiency of the 
system with reduction of the I/O processing cost. 

5.2 Security analysis 
1. Resource monitoring 
As mentioned in Section 4.3, the malicious program would present some unusual behaviors 

before attacks are actually generated, and it has to operate the underlying resources mapped 
form the seniors when they launch attacking. According to the probable relationships between 
senior behaviors and underlying operations of malicious program [37], VMM needs to focus 
on controlling the operations for kernel proper memory and monitoring the specific underlying 
activities of malicious program to protect the key resources of system. It mainly includes four 
aspects as follows. 

1) Writing to sensitive memory. VMM needs to set this kind of memory to read-only 
mode. The malicious program would be captured by VMM once it is attempt to 
modify the memory. 

2) Executing system call. Quick system calls and software traps are the two ways to 
generate system calls. For doing further analysis of malicious program, VMM shall 
set the service entry address to invalid one to lead VM to exit when system call is 
triggered by the program.  

3) Context switching. Accompanied by page table switching, the context switching can 
be monitored by VMM through the change of CR3. Afterwards, VMM continues to 
match the current process with the target and acquires more detailed information by 
means of VMI. 

4) Modifying boot sector. The boot sector is tending to be modified and utilized by 
malicious program. Through the device virtualization module, VMM is able to set the 
boot sector non-writable to capture the write operation to this area. 

2. Forced transfer of control flow 
To protect the resources of guest VM, it is important on the one hand to monitor the key 

points as listed above so that VMM can gain control once related resources are accessed; on 
the other, it is also necessary to force the information flow completely transferred in the 
default path for purpose of more reliable post-processing. For some perceiving sites and 
transfer points of control flow are deployed in guest VM, not only shall they be isolated from 
the code of guest VM to prevent malicious program from bypassing or destroy them, but also 
they need to possess the self-contained property to execute themselves independently of VM 
code. As analyzed in Section 3, the security requirements of control flow transfer can be 
expressed in the following. 

1) I(Ce) will be activated if and only if e is generated legally and normally. 
2) Ce cannot be modified during from e's occurrence to the process of I(Ce). 
3) Sr(Ce) and Tr(Ce) cannot be tempered with during the process of delivering Ce. 
4) Trsp(Ce) and Srsp(Ce) cannot be tempered with during the process of returning Ce. 
5) R(Ce) must be enforced. 

5.3 The results of VMM protection 
In this section, the mechanism of VMM protection is tested by structuring the VMM loophole 
to provide programs the chance to access VMM memory. Considering that the VM acquires 
the whole physical memory depending on E820 of virtual BIOS structured by VMM, it can 
make VM access the VMM's private memory by modifying the E820 in VM kernel. As Fig. 14 
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shows, the guest VM can cross the boundary to access the extra memory size of 40M that 
belongs to VMM and cannot be accessed by VM in normal state. 
 

 

 
Fig. 14. Results of VM memory detection before and after modifying E820 

 
At this time, the layout of machine memory can be expressed as Fig. 15. The legal access 

area for VM ranges from 10M to 610M, while the illegal ranges from 610M to 650M. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 15. Layout of machine address after modifying E820 
 

When processes generate the writing requests, the page fault will be triggered so that SMD 
can judge whether the writing operations are locating on that area size of 40M by analyzing the 
destination machine addresses in shadow page table. Fig. 16 expresses the statistic of page 
faults over a period. 
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Fig. 16. Page fault distribution in machine address space 

 
The page faults belonging from 0xA00000 to 0x26200000 are legal, while the ones ranging 

from 0x2620000 to 0x28a00000 are generated by illegal operations of modifying VMM's 
memory. Besides, the missing pages of VMM itself trigger the page faults locating above 
0x28a00000. After recognizing the different types of page faults, SMD will take measures to 
deal with them according to the default policy. For the page fault caused by operating on 
VMM's memory, SMD replaces the instruction corresponding to Guest.EIP with NULL, and 
then returns to VM's execution. 

 

5.4 The results of VM protection 
In our proposed system, the prototype of guest VM is the Linux release version Fedora 13 with 
the kernel version 2.6.38. In order to verify the actual effect of perception mechanism in 
system protection, malicious programs in Linux system are collected as test data, as shown in 
Table 4. 
 

Table 4. Malicious software used in the perception mechanism test 
Name Behavior description 

Slapper Worm based on the bugs of OpenSSL library 
Bliss Virus that infects and locates ELF files, overlays binary files with malicious code 
Staog Virus that infects ELF files 
Typot Trojan that scans distributed ports and generates TCP packets with window 55808 

Mydoom Worm that launches DoS attack by means of network spread and process termination 
TNF DDoS agent that can launch attacks such as ICMP Flood, Smurf and so on 

Lindose Cross-platform virus infecting both Windows PE and Linux ELF files 
ADORE.A Worm that can rewrite /bin/ps and open port 65535 
CHEESE.A Worm that removes all /bin/sh in /etc/inetd.conf file and close inetd 

 
Taking Lindose as an example, the test method of the perception mechanism mainly 

includes three steps: ESP transmission, data structure analysis and process destruction: 
1) ESP transmission. After starting Lindose, the extended security software ClamAV deployed in 

VM will first report the threat in system and transmit Lindose's PID to perception unit in VM. 
Then the unit identifies and records the process corresponding to the PID. When the process 
Lindose is scheduled by kernel, the perception unit gets ESP from the kernel stack of current 
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process and writes it to the defined memory R, and then calls VMCALL instruction to 
generate the VM-exit event. At this moment, the perception unit in VMM can obtain the ESP 
of Lindose from R, as analysis in section 4.3. 

2) Data structure parsing. The obtained ESP value is the process linear address and it must be 
converted to the corresponding machine address by SPT, which can be used to gradually parse 
out the corresponding position of thread_info, task_struct and also vm_area in machine 
memory. The mapping relation between linear address and machine address of key data 
structure of Lindose is shown in Table 5, wherein the symbol ⊗ represents no established 
mapping from the corresponding linear address to machine address of vm_area in SPT. There 
are two reasons of this situation: one is that the guest VM does not allocate the actual physical 
page for corresponding vm_area region, the other is that the SPT and the page of Lindose in 
guest VM have not been synchronized yet. 

3)  
Table 5. Mapping relation from linear address to machine address of lindose 

Key Structure of Process Linear Address Machine Address 
ESP 0xdaacff68 0x64179f6 

thread_info 0xdaace000 0x6416000 
task_struct 0xdab18c50 0x65a9430 

vm_area 

0x54c000 - 0x56a000 0x72a0000-0x72ce000 
0x56a000 - 0x56b000 0x72ce000-0x72cf000 
0x56b000 - 0x56c000 0x72cf000-0x72d0000 
0x572000 - 0x6f8000 ⊗ 
0x6f8000 - 0x6fa000 0x748b000-0x748d000 
0x6fa000 - 0x6fb000 0x748d000-0x748e000 
0x6fb000 - 0x6fe000 0x748e000-0x7491000 

0x8048000- 0x804a000 ⊗ 
0x804a000 - 0x804b000 ⊗ 
0x9980000 - 0x99a1000 0x7491000-0x74b2000 

0xb78bc000 - 0xb78bd000 ⊗ 
0xb78dc000 - 0xb78dd000 ⊗ 
0xb78dd000 - 0xb78de000 ⊗ 
0xbfca8000 - 0xbfcca000 ⊗ 

4) Process destruction. In the test, we adopt the way of covering vm_area to destroy the 
malicious program. For vm_area area that has been mapped, the random data or 
simple 0 is written to the corresponding area of machine memory. And for the area 
that has not been mapped, we don't bother to deal with it. As the code in Lindose 
address space has been cleared, Lindose will be terminated when it is scheduled next 
time because of the generation of invalid opcode exception. 
 

5.5 Overhead 
1. VMM protection overhead 
The overhead of VMM protection comes from the VM exit caused by page faults and the 

communication between VMM and SMD. We choose three kinds of benchmark tools – the 
SpecInt2006, IOZone and SysBench – to evaluate the overhead of VMM protection 
mechanism. SpecInt2006 is a computer benchmark specification for CPU processing power, 
and IOzone is a filesystem benchmark tool that generates and measures kinds of file operations, 
while SysBench is a modular and multithreaded benchmark tool mainly used to evaluate the 
database load under various system parameters. The three tools are complementary to each 
other in aspects of test object and method to some degree, and have wide range and precise 
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indicators. We could take advantage of the tools to comprehensively evaluate the overhead of 
the mechanism from different aspects such as CPU processing capacity, read and write 
performance of file system and so on. We use them to test and compare the time consumption 
when enabling and disabling the mechanism of VMM protection. The result can be shown as 
Fig. 17 that the time overhead when enabling the protection reaches to almost 9% increases 
relative to the disable situation. 

 

 
Fig. 17. The overhead statistic of VMM protection 

 
Due to the read-only setting, the writing operation on certain memory for the first time will 

trigger the page fault that will be enabled during the process of subsequent execution. 
Therefore, the overhead is mainly generated at the beginning of the program's running. It 
spends almost 9% extra overhead to complete the VMM protection that has little impact on 
system performance. 

 
2. VM protection overhead 
The cost of perception mechanism is mainly derived from the two aspects of VM exit and 

process address parsing. In order to evaluate the effect of the two factors on the system 
performance, the relative cost of the mechanism is tested. Assuming that Tv represents the time 
cost from starting the malicious process to covering the address space of it, while Tr represents 
the cost in non-virtualization environment, we focus on the relative cost r that can be 
expressed as (Tv -Tr)/ Tr. Fig. 18 shows the relative cost of leveraging perception mechanism to 
process the malicious programs, from which we can see that the average relative cost is about 
6.5% with the maximum of 10.5%. Compared with the result in non-virtualized system, the 
time cost of perception mechanism has not increased significantly. 
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Fig. 18. Bar graph of relative cost of perception mechanism 

 
3. Synthetic overhead 
The overheads, generated by six applications run respectively in original system and 

CVMM, are compared by evaluating the system performance after bringing in the security 
mechanism. The six applications belong to three different types: CPU-intensive, I/O-intensive 
and the mixed type. The contrast of resulting overheads is shown as Fig. 19.  

 

 
Fig. 19. Bar graph of relative cost of the overall system 

 
Here we also use relative cost r to measure the difference of overheads generated between 

CVMM and original system (non-virtualization system). It can be seen from the figure above 
that r ranges from 6% to 10.4% for CPU-intensive operations which means that the impact of 
virtualization on normal CPU operations is not significant; while r ranges from 19.7% to 
22.8% for I/O-intensive operations because the I/O operations in virtualization system need to 
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be intervened by VMM that deliver them to device model. And for mixed operations, r is about 
23.1% due to the frequent switching between the address space of VM and VMM in 
virtualization environment. 

6. Conclusion 
In this paper, we have proposed a multi-level perception security model using virtualization. 
We start with creating the threat model based on the analysis of security risk that CVMM faces. 
By setting the asymmetric address mappings and access permissions, we can either isolate the 
security components and perception points from easily infected code, or prohibit them from 
being modified. To protect the integrity of VMM, we establish the perceiving mechanism 
from SMD to VMM based on the construction of page fault events and identification of their 
type. The change of VMM memory can be perceived and verified by another system 
possessing the same privilege, the SMD. For further protection of guest VM, we implement 
the secure perception combining the properties of guest VM and VMM. The guest VM is able 
to transmit the key information in a secure way with the support of hardware-assisted 
technology. SMD can successfully restore the advanced semantics of the target process from 
the low-level information it acquires which overcomes the difficulty of semantic gap. The 
evaluation results show that the proposed security model could obtain the valuable 
information of target system while the integrity of security perception units is ensured, and it 
also could prevent VMM from being modified maliciously and identify the abnormal state of 
target system effectively while the extra overhead does not increase significantly. 

However, there are some restrictions of the proposed model to be broken through. The 
identification of unknown abnormal behavior remains to be further improved. As we adopt the 
write protection strategy of SPT to protect VMM memory, it will cause a large number of page 
faults when the process first performs write operation. The VM exit handling and 
communication between VMM and SMD will generate the considerable overhead, which may 
also be detected and used by malicious program. In future work, we plan to introduce the 
appropriate intelligent algorithms into our model to classify the intrusion behavior, and thus to 
improve the identification ability and accuracy of the security mechanism. Moreover, we 
consider to set the dynamic strategy of write protection according to real-time behavior of 
target VM, so as to decrease the number of VM exit operation caused by page fault, and finally 
leads to reduce the performance overhead of VMM protection. 
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