• 제목/요약/키워드: Domain deformation

검색결과 226건 처리시간 0.028초

부분 손상과 기하학적 공격에 강인한 워터마킹 방법 (A Robust Watermarking Method against Partial Damage and Geometric Attack)

  • 김학수
    • 한국멀티미디어학회논문지
    • /
    • 제15권9호
    • /
    • pp.1102-1111
    • /
    • 2012
  • 본 논문에서는 워터마크된 영상이 일부 손상되었다 할지라도 기하학적 공격에 강인한 다중 비트 워터마킹 방법을 제안한다. 이 방법은 임의의 영상을 기 정의된 표준 영상으로 변형하는 표준 영상 정규화 과정과 표준 정규화 영상의 DCT 영역에 대역 확산(spread spectrum) 기법을 이용하여 워터마크를 삽입하는 과정으로 구성되어있다. 제안한 표준 영상 정규화 방법은 기존의 영상 정규화 방법을 개선한 것으로써 부분 손상과 임의 기하학적 공격에 강인한 특성을 가지고 있으며, 대역 확산 기법을 이용한 워터마크 삽입과정은 블러링, 샤프닝, 압축 등과 같은 영상 손실에 강인한 특성을 가지고 있다. 또한 제안한 워터마킹 방법은 워터마크 검출을 위해 원영상이 필요하지 않기 때문에 공개 워터마킹(public watermarking) 응용에 적합하다. 몇 가지 실험을 통해 제안한 워터마킹 방법이 부분 손상 및 기하학적 변형을 포함한 여러 가지 공격에 강인하다는 것을 보여준다.

Bending of steel fibers on partly supported elastic foundation

  • Hu, Xiao Dong;Day, Robert;Dux, Peter
    • Structural Engineering and Mechanics
    • /
    • 제12권6호
    • /
    • pp.657-668
    • /
    • 2001
  • Fiber reinforced cementitious composites are nowadays widely applied in civil engineering. The postcracking performance of this material depends on the interaction between a steel fiber, which is obliquely across a crack, and its surrounding matrix. While the partly debonded steel fiber is subjected to pulling out from the matrix and simultaneously subjected to transverse force, it may be modelled as a Bernoulli-Euler beam partly supported on an elastic foundation with non-linearly varying modulus. The fiber bridging the crack may be cut into two parts to simplify the problem (Leung and Li 1992). To obtain the transverse displacement at the cut end of the fiber (Fig. 1), it is convenient to directly solve the corresponding differential equation. At the first glance, it is a classical beam on foundation problem. However, the differential equation is not analytically solvable due to the non-linear distribution of the foundation stiffness. Moreover, since the second order deformation effect is included, the boundary conditions become complex and hence conventional numerical tools such as the spline or difference methods may not be sufficient. In this study, moment equilibrium is the basis for formulation of the fundamental differential equation for the beam (Timoshenko 1956). For the cantilever part of the beam, direct integration is performed. For the non-linearly supported part, a transformation is carried out to reduce the higher order differential equation into one order simultaneous equations. The Runge-Kutta technique is employed for the solution within the boundary domain. Finally, multi-dimensional optimization approaches are carefully tested and applied to find the boundary values that are of interest. The numerical solution procedure is demonstrated to be stable and convergent.

Hydro-elastic analysis of marine propellers based on a BEM-FEM coupled FSI algorithm

  • Lee, Hyoungsuk;Song, Min-Churl;Suh, Jung-Chun;Chang, Bong-Jun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권3호
    • /
    • pp.562-577
    • /
    • 2014
  • A reliable steady/transient hydro-elastic analysis is developed for flexible (composite) marine propeller blade design which deforms according to its environmental load (ship speed, revolution speed, wake distribution, etc.) Hydro-elastic analysis based on CFD and FEM has been widely used in the engineering field because of its accurate results however it takes large computation time to apply early propeller design stage. Therefore the analysis based on a boundary element method-Finite Element Method (BEM-FEM) Fluid-Structure Interaction (FSI) is introduced for computational efficiency and accuracy. The steady FSI analysis, and its application to reverse engineering, is designed for use regarding optimum geometry and ply stack design. A time domain two-way coupled transient FSI analysis is developed by considering the hydrodynamic damping ffects of added mass due to fluid around the propeller blade. The analysis makes possible to evaluate blade strength and also enable to do risk assessment by estimating the change in performance and the deformation depending on blade position in the ship's wake. To validate this hydro-elastic analysis methodology, published model test results of P5479 and P5475 are applied to verify the steady and the transient FSI analysis, respectively. As the results, the proposed steady and unsteady analysis methodology gives sufficient accuracy to apply flexible marine propeller design.

Ultimate strength estimation of composite plates under combined in-plane and lateral pressure loads using two different numerical methods

  • Ghannadpour, S.A.M.;Shakeri, M.;Barvaj, A. Kurkaani
    • Steel and Composite Structures
    • /
    • 제29권6호
    • /
    • pp.785-802
    • /
    • 2018
  • In this paper, two different computational methods, called Rayleigh-Ritz and collocation are developed to estimate the ultimate strength of composite plates. Progressive damage behavior of moderately thick composite laminated plates is studied under in-plane compressive load and uniform lateral pressure. The formulations of both methods are based on the concept of the principle of minimum potential energy. First order shear deformation theory and the assumption of large deflections are used to develop the equilibrium equations of laminated plates. Therefore, Newton-Raphson technique will be used to solve the obtained system of nonlinear algebraic equations. In Rayleigh-Ritz method, two degradation models called complete and region degradation models are used to estimate the degradation zone around the failure location. In the second method, a new energy based collocation technique is introduced in which the domain of the plate is discretized into the Legendre-Gauss-Lobatto points. In this new method, in addition to the two previous models, the new model named node degradation model will also be used in which the material properties of the area just around the failed node are reduced. To predict the failure location, Hashin failure criteria have been used and the corresponding material properties of the failed zone are reduced instantaneously. Approximation of the displacement fields is performed by suitable harmonic functions in the Rayleigh-Ritz method and by Legendre basis functions (LBFs) in the second method. Finally, the results will be calculated and discussions will be conducted on the methods.

Meso-scale based parameter identification for 3D concrete plasticity model

  • Suljevic, Samir;Ibrahimbegovic, Adnan;Karavelic, Emir;Dolarevic, Samir
    • Coupled systems mechanics
    • /
    • 제11권1호
    • /
    • pp.55-78
    • /
    • 2022
  • The main aim of this paper is the identification of the model parameters for the constitutive model of concrete and concrete-like materials capable of representing full set of 3D failure mechanisms under various stress states. Identification procedure is performed taking into account multi-scale character of concrete as a structural material. In that sense, macro-scale model is used as a model on which the identification procedure is based, while multi-scale model which assume strong coupling between coarse and fine scale is used for numerical simulation of experimental results. Since concrete possess a few clearly distinguished phases in process of deformation until failure, macro-scale model contains practically all important ingredients to include both bulk dissipation and surface dissipation. On the other side, multi-scale model consisted of an assembly micro-scale elements perfectly fitted into macro-scale elements domain describes localized failure through the implementation of embedded strong discontinuity. This corresponds to surface dissipation in macro-scale model which is described by practically the same approach. Identification procedure is divided into three completely separate stages to utilize the fact that all material parameters of macro-scale model have clear physical interpretation. In this way, computational cost is significantly reduced as solving three simpler identification steps in a batch form is much more efficient than the dealing with the full-scale problem. Since complexity of identification procedure primarily depends on the choice of either experimental or numerical setup, several numerical examples capable of representing both homogeneous and heterogeneous stress state are performed to illustrate performance of the proposed methodology.

A semi-analytical and numerical approach for solving 3D nonlinear cylindrical shell systems

  • Liming Dai;Kamran Foroutan
    • Structural Engineering and Mechanics
    • /
    • 제87권5호
    • /
    • pp.461-473
    • /
    • 2023
  • This study aims to solve for nonlinear cylindrical shell systems with a semi-analytical and numerical approach implementing the P-T method. The procedures and conditions for such a study are presented in practically solving and analyzing the cylindrical shell systems. An analytical model for a nonlinear thick cylindrical shell (TCS) is established on the basis of the stress function and Reddy's higher-order shear deformation theory (HSDT). According to Reddy's HSDT, Hooke's law in three dimensions, and the von-Kármán equation, the stress-strain relations are developed for the thick cylindrical shell systems, and the three coupled nonlinear governing equations are thus established and discretized as per the Galerkin method, for implementing the P-T method. The solution generated with the approach is continuous everywhere in the entire time domain considered. The approach proposed can also be used to numerically solve and analyze the nonlinear shell systems. The procedures and recurrence relations for numerical solutions of shell systems are presented. To demonstrate the application of the approach in numerically solving for nonlinear cylindrical shell systems, a specific nonlinear cylindrical shell system subjected to an external excitation is solved numerically. In numerically solving for the system, the present approach shows higher efficiency, accuracy, and reliability in comparison with that of the Runge-Kutta method. The approach with the P-T method presented is practically sound especially when continuous and high-quality numerical solutions for the shell systems are considered.

Free vibration analysis of a laminated trapezoidal plate with GrF-PMC core and wavy CNT-reinforced face sheets

  • Yingqun Zhang;Qian Zhao;Qi Han;N. Bohlooli
    • Steel and Composite Structures
    • /
    • 제48권3호
    • /
    • pp.275-291
    • /
    • 2023
  • This paper has focused on presenting vibration analysis of trapezoidal sandwich plates with 3D-graphene foam reinforced polymer matrix composites (GrF-PMC) core and FG wavy CNT-reinforced face sheets. The porous graphene foam possessing 3D scaffold structures has been introduced into polymers for enhancing the overall stiffness of the composite structure. Also, 3D graphene foams can distribute uniformly or non-uniformly in the plate thickness direction. The effective Young's modulus, mass density and Poisson's ratio are predicted by the rule of mixture. In this study, the classical theory concerning the mechanical efficiency of a matrix embedding finite length fibers has been modified by introducing the tube-to-tube random contact, which explicitly accounts for the progressive reduction of the tubes' effective aspect ratio as the filler content increases. The First-order shear deformation theory of plate is utilized to establish governing partial differential equations and boundary conditions for trapezoidal plate. The governing equations together with related boundary conditions are discretized using a mapping-generalized differential quadrature (GDQ) method in spatial domain. Then natural frequencies of the trapezoidal sandwich plates are obtained using GDQ method. Validity of the current study is evaluated by comparing its numerical results with those available in the literature. It is explicated that 3D-GrF skeleton type and weight fraction, carbon nanotubes (CNTs) waviness and CNT aspect ratio can significantly affect the vibrational behavior of the sandwich structure. The plate's normalized natural frequency decreased and the straight carbon nanotube (w=0) reached the highest frequency by increasing the values of the waviness index (w).

DMD기반 Kirchhoff-Love 판의 모드 분석과 수치해 예측 (DMD based modal analysis and prediction of Kirchhoff-Love plate)

  • 신성윤;조광현;배석찬
    • 한국정보통신학회논문지
    • /
    • 제26권11호
    • /
    • pp.1586-1591
    • /
    • 2022
  • Kirchhoff-Love 판 (KLP) 방정식은 특정 외력이 얇은 막에 끼치는 변형을 기술하는 잘 알려진 이론이다. 한편, frequency 도메인에서 진동하는 판을 해석하는 것은 주요 진동 주파수와 고유함수들을 구하는 것과 판의 진동을 예측하는데 중요하다. 다양한 모드 분석 방법들 중 dynamic mode decomposition (DMD)는 효율적인 data 기반 방법이다. 이 논문에서 우리는 DMD를 기반으로 sine 유형 외력의 영향력 안에 있는 KLP의 모드 분석을 수행한다. 우리는 먼저 유한차분법을 사용하여 이산적으로 표현된 시계열 형식의 KLP 해를 구한다. 720,00개의 FDM으로 생성된 해중에서, 오직 500개의 해만을 DMD의 구현을 위해 선택한다. 우리는 결과적으로 얻어진 DMD-mode를 보고한다. 또한, DMD를 통하여 KLP의 해를 예측하는 효율적인 방법을 소개한다.

Using DQ method for vibration analysis of a laminated trapezoidal structure with functionally graded faces and damaged core

  • Vanessa Valverde;Patrik Viktor;Sherzod Abdullaev;Nasrin Bohlooli
    • Steel and Composite Structures
    • /
    • 제51권1호
    • /
    • pp.73-91
    • /
    • 2024
  • This paper has focused on presenting vibration analysis of trapezoidal sandwich plates with a damaged core and FG wavy CNT-reinforced face sheets. A damage model is introduced to provide an analytical description of an irreversible rheological process that causes the decay of the mechanical properties, in terms of engineering constants. An isotropic damage is considered for the core of the sandwich structure. The classical theory concerning the mechanical efficiency of a matrix embedding finite length fibers has been modified by introducing the tube-to-tube random contact, which explicitly accounts for the progressive reduction of the tubes' effective aspect ratio as the filler content increases. The First-order shear deformation theory of plate is utilized to establish governing partial differential equations and boundary conditions for the trapezoidal plate. The governing equations together with related boundary conditions are discretized using a mapping-generalized differential quadrature (GDQ) method in spatial domain. Then natural frequencies of the trapezoidal sandwich plates are obtained using GDQ method. Validity of the current study is evaluated by comparing its numerical results with those available in the literature. After demonstrating the convergence and accuracy of the method, different parametric studies for laminated trapezoidal structure including carbon nanotubes waviness (0≤w≤1), CNT aspect ratio (0≤AR≤4000), face sheet to core thickness ratio (0.1 ≤ ${\frac{h_f}{h_c}}$ ≤ 0.5), trapezoidal side angles (30° ≤ α, β ≤ 90°) and damaged parameter (0 ≤ D < 1) are carried out. It is explicated that the damaged core and weight fraction, carbon nanotubes (CNTs) waviness and CNT aspect ratio can significantly affect the vibrational behavior of the sandwich structure. Results show that by increasing the values of waviness index (w), normalized natural frequency of the structure decreases, and the straight CNT (w=0) gives the highest frequency. For an overall comprehension on vibration of laminated trapezoidal plates, some selected vibration mode shapes were graphically represented in this study.

스테레오 3D 영상 스케일링에 대한 기하학적 분석 및 anti-aliasing 필터 (Geometric analysis and anti-aliasing filter for stereoscopic 3D image scaling)

  • 김욱중;허남호;김진웅
    • 방송공학회논문지
    • /
    • 제14권5호
    • /
    • pp.638-649
    • /
    • 2009
  • 최근 들어 다양한 스테레오 3D 디스플레이 장치의 출시가 활발히 이루어지면서 임의의 스테레오 3D 영상에 대한 효과적인 크기 변환 방법, 즉 스케일링(scaling) 방법에 대한 요구가 증가되고 있다. 그런데 CG 등을 통하여 생성된 경우와 같이 장면의 기하학적 정보를 완벽히 파악할 수 있는 경우를 제외하고는, 정확한 스테레오 3D 영상의 스케일링은 현실적으로 불가능하다. 이러한 제한으로 가장 널리 이용되는 방법은 좌우 영상에 대하여 적절한 2D 스케일링을 수행하고, 그 결과로 적절한 스테레오 3D 영상스케일링이 발생하기를 기대하는 것이다. 본 논문에서는 2D 영상 스케일링을 통한 스테레오 3D 영상 스케일링에 있어서, 양안시(binocular vision) 모델에 근거한 기하학적 분석과 주파수 변화 분석을 제시한다. 기하학적 분석을 통해서는 스테레오 3D 영상에서 발생 가능한 왜곡들에 대해서 설명하고, 주파수 변화 분석을 통해서는 디지털 신호의 스케일링에 필수적으로 요구되는 aliasing 왜곡 방지 방법에 대해서도 제안한다. 제안된 방법은 주관적 화질 평가 결과 샘플링 이론 (sampling theory)에만 근거한 필터링 방식에 비해 화질 왜곡을 더욱 효과적으로 억제할 수 있다는 것을 파악할 수 있었다. 따라서, 제안된 방법은 다양한 해상도를 지니는 3D 디스플레이 장치에서의 스테레오 3D 영상 재생에 효과적으로 이용될 것으로 기대된다.