• Title/Summary/Keyword: Document-term-matrix

Search Result 46, Processing Time 0.024 seconds

Document Summarization using Pseudo Relevance Feedback and Term Weighting (의사연관피드백과 용어 가중치에 의한 문서요약)

  • Kim, Chul-Won;Park, Sun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.3
    • /
    • pp.533-540
    • /
    • 2012
  • In this paper, we propose a document summarization method using the pseudo relevance feedback and the term weighting based on semantic features. The proposed method can minimize the user intervention to use the pseudo relevance feedback. It also can improve the quality of document summaries because the inherent semantic of the sentence set are well reflected by term weighting derived from semantic feature. In addition, it uses the semantic feature of term weighting and the expanded query to reduce the semantic gap between the user's requirement and the result of proposed method. The experimental results demonstrate that the proposed method achieves better performant than other methods without term weighting.

An Efficient kNN Algorithm (효율적인 kNN 알고리즘)

  • Lee Jae Moon
    • The KIPS Transactions:PartB
    • /
    • v.11B no.7 s.96
    • /
    • pp.849-854
    • /
    • 2004
  • This paper proposes an algorithm to enhance the execution time of kNN in the document classification. The proposed algorithm is to enhance the execution time by minimizing the computing cost of the similarity between two documents by using the list of pairs, while the conventional kNN uses the iist of pairs. The 1ist of pairs can be obtained by applying the matrix transposition to the list of pairs at the training phase of the document classification. This paper analyzed the proposed algorithm in the time complexity and compared it with the conventional kNN. And it compared the proposed algorithm with the conventional kNN by using routers-21578 data experimentally. The experimental results show that the proposed algorithm outperforms kNN about $90{\%}$ in terms of the ex-ecution time.

Document Summarization using Weighting based on Cloud (클라우드 기반의 가중치에 의한 문서요약)

  • Park, Sun;Kim, Chul Won
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.305-306
    • /
    • 2013
  • In this paper, we proposes a document summarization method using the weighting based on cloud. The proposed method can minimize the user intervention to use the relevance feedback. It also can improve the quality of document summaries because the inherent semantic of the sentence set are well reflected by term weighting derived from semantic feature using nonnegative matrix factorizaitno based cloud.

  • PDF

Document Summarization using Weighting based on Cloud (클라우드 기반의 가중치에 의한 문서요약)

  • Park, Sun;Kim, Chul Won
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.968-969
    • /
    • 2013
  • In this paper, we proposes a document summarization method using the weighting based on cloud. The proposed method can minimize the user intervention to use the relevance feedback. It also can improve the quality of document summaries because the inherent semantic of the sentence set are well reflected by term weighting derived from semantic feature using nonnegative matrix factorizaitno based cloud.

  • PDF

Orthogonal Nonnegative Matrix Factorization: Multiplicative Updates on Stiefel Manifolds (Stiefel 다양체에서 곱셈의 업데이트를 이용한 비음수 행렬의 직교 분해)

  • Yoo, Ji-Ho;Choi, Seung-Jin
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.5
    • /
    • pp.347-352
    • /
    • 2009
  • Nonnegative matrix factorization (NMF) is a popular method for multivariate analysis of nonnegative data, the goal of which is decompose a data matrix into a product of two factor matrices with all entries in factor matrices restricted to be nonnegative. NMF was shown to be useful in a task of clustering (especially document clustering). In this paper we present an algorithm for orthogonal nonnegative matrix factorization, where an orthogonality constraint is imposed on the nonnegative decomposition of a term-document matrix. We develop multiplicative updates directly from true gradient on Stiefel manifold, whereas existing algorithms consider additive orthogonality constraints. Experiments on several different document data sets show our orthogonal NMF algorithms perform better in a task of clustering, compared to the standard NMF and an existing orthogonal NMF.

Stock Price Prediction by Utilizing Category Neutral Terms: Text Mining Approach (카테고리 중립 단어 활용을 통한 주가 예측 방안: 텍스트 마이닝 활용)

  • Lee, Minsik;Lee, Hong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.123-138
    • /
    • 2017
  • Since the stock market is driven by the expectation of traders, studies have been conducted to predict stock price movements through analysis of various sources of text data. In order to predict stock price movements, research has been conducted not only on the relationship between text data and fluctuations in stock prices, but also on the trading stocks based on news articles and social media responses. Studies that predict the movements of stock prices have also applied classification algorithms with constructing term-document matrix in the same way as other text mining approaches. Because the document contains a lot of words, it is better to select words that contribute more for building a term-document matrix. Based on the frequency of words, words that show too little frequency or importance are removed. It also selects words according to their contribution by measuring the degree to which a word contributes to correctly classifying a document. The basic idea of constructing a term-document matrix was to collect all the documents to be analyzed and to select and use the words that have an influence on the classification. In this study, we analyze the documents for each individual item and select the words that are irrelevant for all categories as neutral words. We extract the words around the selected neutral word and use it to generate the term-document matrix. The neutral word itself starts with the idea that the stock movement is less related to the existence of the neutral words, and that the surrounding words of the neutral word are more likely to affect the stock price movements. And apply it to the algorithm that classifies the stock price fluctuations with the generated term-document matrix. In this study, we firstly removed stop words and selected neutral words for each stock. And we used a method to exclude words that are included in news articles for other stocks among the selected words. Through the online news portal, we collected four months of news articles on the top 10 market cap stocks. We split the news articles into 3 month news data as training data and apply the remaining one month news articles to the model to predict the stock price movements of the next day. We used SVM, Boosting and Random Forest for building models and predicting the movements of stock prices. The stock market opened for four months (2016/02/01 ~ 2016/05/31) for a total of 80 days, using the initial 60 days as a training set and the remaining 20 days as a test set. The proposed word - based algorithm in this study showed better classification performance than the word selection method based on sparsity. This study predicted stock price volatility by collecting and analyzing news articles of the top 10 stocks in market cap. We used the term - document matrix based classification model to estimate the stock price fluctuations and compared the performance of the existing sparse - based word extraction method and the suggested method of removing words from the term - document matrix. The suggested method differs from the word extraction method in that it uses not only the news articles for the corresponding stock but also other news items to determine the words to extract. In other words, it removed not only the words that appeared in all the increase and decrease but also the words that appeared common in the news for other stocks. When the prediction accuracy was compared, the suggested method showed higher accuracy. The limitation of this study is that the stock price prediction was set up to classify the rise and fall, and the experiment was conducted only for the top ten stocks. The 10 stocks used in the experiment do not represent the entire stock market. In addition, it is difficult to show the investment performance because stock price fluctuation and profit rate may be different. Therefore, it is necessary to study the research using more stocks and the yield prediction through trading simulation.

Text-Mining Analyses of News Articles on Schizophrenia (조현병 관련 주요 일간지 기사에 대한 텍스트 마이닝 분석)

  • Nam, Hee Jung;Ryu, Seunghyong
    • Korean Journal of Schizophrenia Research
    • /
    • v.23 no.2
    • /
    • pp.58-64
    • /
    • 2020
  • Objectives: In this study, we conducted an exploratory analysis of the current media trends on schizophrenia using text-mining methods. Methods: First, web-crawling techniques extracted text data from 575 news articles in 10 major newspapers between 2018 and 2019, which were selected by searching "schizophrenia" in the Naver News. We had developed document-term matrix (DTM) and/or term-document matrix (TDM) through pre-processing techniques. Through the use of DTM and TDM, frequency analysis, co-occurrence network analysis, and topic model analysis were conducted. Results: Frequency analysis showed that keywords such as "police," "mental illness," "admission," "patient," "crime," "apartment," "lethal weapon," "treatment," "Jinju," and "residents" were frequently mentioned in news articles on schizophrenia. Within the article text, many of these keywords were highly correlated with the term "schizophrenia" and were also interconnected with each other in the co-occurrence network. The latent Dirichlet allocation model presented 10 topics comprising a combination of keywords: "police-Jinju," "hospital-admission," "research-finding," "care-center," "schizophrenia-symptom," "society-issue," "family-mind," "woman-school," and "disabled-facilities." Conclusion: The results of the present study highlight that in recent years, the media has been reporting violence in patients with schizophrenia, thereby raising an important issue of hospitalization and community management of patients with schizophrenia.

Analysis of English abstracts in Journal of the Korean Data & Information Science Society using topic models and social network analysis (토픽 모형 및 사회연결망 분석을 이용한 한국데이터정보과학회지 영문초록 분석)

  • Kim, Gyuha;Park, Cheolyong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.1
    • /
    • pp.151-159
    • /
    • 2015
  • This article analyzes English abstracts of the articles published in Journal of the Korean Data & Information Science Society using text mining techniques. At first, term-document matrices are formed by various methods and then visualized by social network analysis. LDA (latent Dirichlet allocation) and CTM (correlated topic model) are also employed in order to extract topics from the abstracts. Performances of the topic models are compared via entropy for several numbers of topics and weighting methods to form term-document matrices.

Analysis of patterns in meteorological research and development using a text-mining algorithm (텍스트 마이닝 알고리즘을 이용한 기상청 연구개발분야 과제의 추세 분석)

  • Park, Hongju;Kim, Habin;Park, Taeyoung;Lee, Yung-Seop
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.5
    • /
    • pp.935-947
    • /
    • 2016
  • This paper considers the analysis of patterns in meteorological research and development using a text-mining algorithm as the method of analyzing unstructured data. To analyze text data, we define a list of terms related to meteorological research and development, construct times series of a term-document matrix through data preprocessing, and identify terms that have upward or downward patterns over time. The proposed methodology is applied to multi-year plans funded by Korea Meteorological Administration research and development programs from 2011 to 2015.

Feature Filtering Methods for Web Documents Clustering (웹 문서 클러스터링에서의 자질 필터링 방법)

  • Park Heum;Kwon Hyuk-Chul
    • The KIPS Transactions:PartB
    • /
    • v.13B no.4 s.107
    • /
    • pp.489-498
    • /
    • 2006
  • Clustering results differ according to the datasets and the performance worsens even while using web documents which are manually processed by an indexer, because although representative clusters for a feature can be obtained by statistical feature selection methods, irrelevant features(i.e., non-obvious features and those appearing in general documents) are not eliminated. Those irrelevant features should be eliminated for improving clustering performance. Therefore, this paper proposes three feature-filtering algorithms which consider feature values per document set, together with distribution, frequency, and weights of features per document set: (l) features filtering algorithm in a document (FFID), (2) features filtering algorithm in a document matrix (FFIM), and (3) a hybrid method combining both FFID and FFIM (HFF). We have tested the clustering performance by feature selection using term frequency and expand co link information, and by feature filtering using the above methods FFID, FFIM, HFF methods. According to the results of our experiments, HFF had the best performance, whereas FFIM performed better than FFID.