• 제목/요약/키워드: Document-Summarization

검색결과 115건 처리시간 0.03초

다중문서 요약에서 적응 기법을 이용한 문장 추출 (Sentence Extraction Using Adapting Method in Multi-Document Summarization)

  • 임정민;강인수;배재학;이종혁
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2004년도 제16회 한글.언어.인지 한술대회
    • /
    • pp.12-19
    • /
    • 2004
  • 기존의 다중 문서요약은 전체 대상문서에 대해서 한번에 요약문을 생산하지만, 본 논문은 요약 대상문서 집합에서 핵심내용을 갖는 문서를 기본 문서로 선택, 임시 요약문장을 추출하고 대상문서 집합에서 순차적으로 문서를 입력받아 중요문장을 추출, 이전에 구축된 요약문장과 현재 추출된 문장을 비교하면서 요약에 필요한 문장을 선택하는 적응 기법을 제안한다. 제안한 방법으로 구현한 시스템은 NTCIR TSC 3에서 사용된 29개의 다중 문서집합을 통해서 성능을 평가하였다. 적응 기법 시스템은 TSC3의 baseline시스템인 Lead 방법보다는 높은 성능을 나타냈지만, TSC 3에 참가한 시스템들과의 비교에서는 월등한 성능 우위를 나타내지 못했다.

  • PDF

구술문서 자료분석을 위한 정보검색기술의 응용 (Information Technology Application for Oral Document Analysis)

  • 박순철;함한희
    • 한국산업정보학회논문지
    • /
    • 제13권2호
    • /
    • pp.47-55
    • /
    • 2008
  • 본 연구는 정보검색기술을 응용해서 구술문서 자료를 효율적으로 분석하는 시스템 개발을 목적으로 한다. 여기서 사용된 기술은 용어검색, 문서요약기술, 클러스터링기술 문서분류기술 주제추적기술 등이 있다. 본 연구를 위해서 전북지역에서 채록한 구술자료를 이용하였다. 구술문서 구조의 특성을 반영하면서 분석의 단위를 정하고 내용의 자동분류 및 분류체계에 따른 분류도 시도하였다. 특히 주제를 추적하면서 순서에 따라서 검색해 가는 기술은 세계적으로도 아직 연구단계에 있던 것을 실제로 구현하였다. 이러한 5가지의 검색기술이 한 시스템에서 통합적으로 처리될 수 있다는 것도 이 연구가 이룬 성과이다. 이 연구의 기대효과는 구술문서 분석의 신뢰성 타당성 효용성을 높여서 구술문화연구에도 큰 기여를 할 것으로 기대된다.

  • PDF

복사-메커니즘과 추론 단계의 페널티를 이용한 Copy-Transformer 기반 문서 생성 요약 (Copy-Transformer model using Copy-Mechanism and Inference Penalty for Document Abstractive Summarization)

  • 전동현;강인호
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.301-306
    • /
    • 2019
  • 문서 생성 요약은 최근 딥러닝을 이용한 end-to-end 시스템을 통해 유망한 결과들을 보여주고 있어 연구가 활발히 진행되고 있는 자연어 처리 분야 중 하나이다. 하지만 문서 생성 요약 모델을 구성하기 위해서는 대량의 본문과 요약문 쌍의 데이터 셋이 필요한데, 이를 구축하기가 쉽지 않다. 따라서 본 논문에서는 정교한 뉴스 기사 요약 데이터 셋을 기계적으로 구축하는 방법을 제안한다. 또한 딥러닝 기반의 생성 요약은 입력 문서와 다른 정보를 생성하거나, 또는 같은 단어를 반복하여 생성하는 문제점들이 존재한다. 이를 해결하기 위해 요약문을 생성할 때 입력 문서의 내용을 인용하는 복사-메커니즘과, 추론 단계에서 단어 반복을 직접적으로 제어하는 페널티를 사용하면 상대적으로 안정적인 문장이 생성될 수 있다. 그리고 Transformer 모델은 순환 신경망 모델보다 요약문 생성 과정에서 시퀀스 길이가 긴 본문의 정보를 적절히 인코딩하여 줄 수 있는 모델이다. 따라서 본 논문에서는 복사-메커니즘과 추론 단계의 페널티를 이용한 Copy-Transformer 모델을 한국어 문서 생성 요약 데이터에 적용하였다. 네이버 지식iN 질문 요약 데이터 셋과 뉴스 기사 요약 데이터 셋 상에서 실험한 결과, 제안한 모델을 이용한 생성 요약이 비교 모델들 대비 가장 좋은 성능을 보이고 양질의 요약을 생성하는 것을 확인하였다.

  • PDF

복사 메커니즘과 강화 학습을 적용한 BERT 기반의 문서 요약 모델 (BERT-based Document Summarization model using Copying-Mechanism and Reinforcement Learning)

  • 황현선;이창기;고우영;윤한준
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.167-171
    • /
    • 2020
  • 문서 요약은 길이가 긴 원본 문서에서 의미를 유지한 채 짧은 문서나 문장을 얻어내는 작업을 의미한다. 딥러닝을 이용한 자연어처리 기술들이 연구됨에 따라 end-to-end 방식의 자연어 생성 모델인 sequence-to-sequence 모델을 문서 요약 생성에 적용하는 방법들이 연구되었다. 본 논문에서는 여러 자연어처리 분야에서 높은 성능을 보이고 있는 BERT 모델을 이용한 자연어 생성 모델에 복사 메커니즘과 강화 학습을 추가한 문서 요약 모델을 제안한다. 복사 메커니즘은 입력 문장의 단어들을 출력 문장에 복사하는 기술로 학습데이터에서 학습되기 힘든 고유 명사 등의 단어들에 대한 성능을 높이는 방법이다. 강화 학습은 정답 단어의 확률을 높이기 위해 학습하는 지도 학습 방법과는 달리 연속적인 단어 생성으로 얻어진 전체 문장의 보상 점수를 높이는 방향으로 학습하여 생성되는 단어 자체보다는 최종 생성된 문장이 더 중요한 자연어 생성 문제에 효과적일 수 있다. 실험결과 기존의 BERT 생성 모델 보다 복사 메커니즘과 강화 학습을 적용한 모델의 Rouge score가 더 높음을 확인 하였다.

  • PDF

키워드 자동 생성에 대한 새로운 접근법: 역 벡터공간모델을 이용한 키워드 할당 방법 (A New Approach to Automatic Keyword Generation Using Inverse Vector Space Model)

  • 조원진;노상규;윤지영;박진수
    • Asia pacific journal of information systems
    • /
    • 제21권1호
    • /
    • pp.103-122
    • /
    • 2011
  • Recently, numerous documents have been made available electronically. Internet search engines and digital libraries commonly return query results containing hundreds or even thousands of documents. In this situation, it is virtually impossible for users to examine complete documents to determine whether they might be useful for them. For this reason, some on-line documents are accompanied by a list of keywords specified by the authors in an effort to guide the users by facilitating the filtering process. In this way, a set of keywords is often considered a condensed version of the whole document and therefore plays an important role for document retrieval, Web page retrieval, document clustering, summarization, text mining, and so on. Since many academic journals ask the authors to provide a list of five or six keywords on the first page of an article, keywords are most familiar in the context of journal articles. However, many other types of documents could not benefit from the use of keywords, including Web pages, email messages, news reports, magazine articles, and business papers. Although the potential benefit is large, the implementation itself is the obstacle; manually assigning keywords to all documents is a daunting task, or even impractical in that it is extremely tedious and time-consuming requiring a certain level of domain knowledge. Therefore, it is highly desirable to automate the keyword generation process. There are mainly two approaches to achieving this aim: keyword assignment approach and keyword extraction approach. Both approaches use machine learning methods and require, for training purposes, a set of documents with keywords already attached. In the former approach, there is a given set of vocabulary, and the aim is to match them to the texts. In other words, the keywords assignment approach seeks to select the words from a controlled vocabulary that best describes a document. Although this approach is domain dependent and is not easy to transfer and expand, it can generate implicit keywords that do not appear in a document. On the other hand, in the latter approach, the aim is to extract keywords with respect to their relevance in the text without prior vocabulary. In this approach, automatic keyword generation is treated as a classification task, and keywords are commonly extracted based on supervised learning techniques. Thus, keyword extraction algorithms classify candidate keywords in a document into positive or negative examples. Several systems such as Extractor and Kea were developed using keyword extraction approach. Most indicative words in a document are selected as keywords for that document and as a result, keywords extraction is limited to terms that appear in the document. Therefore, keywords extraction cannot generate implicit keywords that are not included in a document. According to the experiment results of Turney, about 64% to 90% of keywords assigned by the authors can be found in the full text of an article. Inversely, it also means that 10% to 36% of the keywords assigned by the authors do not appear in the article, which cannot be generated through keyword extraction algorithms. Our preliminary experiment result also shows that 37% of keywords assigned by the authors are not included in the full text. This is the reason why we have decided to adopt the keyword assignment approach. In this paper, we propose a new approach for automatic keyword assignment namely IVSM(Inverse Vector Space Model). The model is based on a vector space model. which is a conventional information retrieval model that represents documents and queries by vectors in a multidimensional space. IVSM generates an appropriate keyword set for a specific document by measuring the distance between the document and the keyword sets. The keyword assignment process of IVSM is as follows: (1) calculating the vector length of each keyword set based on each keyword weight; (2) preprocessing and parsing a target document that does not have keywords; (3) calculating the vector length of the target document based on the term frequency; (4) measuring the cosine similarity between each keyword set and the target document; and (5) generating keywords that have high similarity scores. Two keyword generation systems were implemented applying IVSM: IVSM system for Web-based community service and stand-alone IVSM system. Firstly, the IVSM system is implemented in a community service for sharing knowledge and opinions on current trends such as fashion, movies, social problems, and health information. The stand-alone IVSM system is dedicated to generating keywords for academic papers, and, indeed, it has been tested through a number of academic papers including those published by the Korean Association of Shipping and Logistics, the Korea Research Academy of Distribution Information, the Korea Logistics Society, the Korea Logistics Research Association, and the Korea Port Economic Association. We measured the performance of IVSM by the number of matches between the IVSM-generated keywords and the author-assigned keywords. According to our experiment, the precisions of IVSM applied to Web-based community service and academic journals were 0.75 and 0.71, respectively. The performance of both systems is much better than that of baseline systems that generate keywords based on simple probability. Also, IVSM shows comparable performance to Extractor that is a representative system of keyword extraction approach developed by Turney. As electronic documents increase, we expect that IVSM proposed in this paper can be applied to many electronic documents in Web-based community and digital library.

문서 요약 및 비교분석을 위한 주제어 네트워크 가시화 (Keyword Network Visualization for Text Summarization and Comparative Analysis)

  • 김경림;이다영;조환규
    • 정보과학회 논문지
    • /
    • 제44권2호
    • /
    • pp.139-147
    • /
    • 2017
  • 문자 정보는 인터넷 공간에 통용되는 정보의 대다수를 차지하고 있다. 따라서 대용량의 문서의 의미를 빠르게 특히 자동적으로 파악하는 일은 빅 데이터 시대의 중요한 연구 주제중 하나이다. 이 분야의 대표적인 연구 중 하나는 문서의 의미를 요약해주는 주요 주제어의 자동 추출 및 분석이다. 그러나 단순히 추출된 개별 주제어들의 집합만으로 문서의 의미구조를 나타내기에는 부족함이 있다. 본 논문에서는 추출된 주제어들의 연관관계를 그래프로 표현하여 대상 문서의 의미구조를 보다 다양하게 표시하고 추상화할 수 있는 주제어 가시화 방법을 개발하였다. 먼저 각 주제어들 간의 연관관계를 추출하기 위해 주제어별 지배구간 모델과 단어거리 모델을 제안하였다. 이렇게 추출한 주제어 연결성과 그를 형상화한 그래프는 문서의 의미구조를 보다 함축적으로 담고 있으므로 문서의 빠른 내용파악과 요약이 가능하며 이 가시화 그래프를 비교함으로서 문서의 의미적 유사도 비교도 가능하다. 실험을 통하여 문서의 의미파악과 비교에 본 주제어 가시화 그래프는 일반적인 요약문이나 단순 주제어 리스트보다 더 유용함을 보였다.

한국어 자연어생성에 적합한 사전훈련 언어모델 특성 연구 (A Study of Pre-trained Language Models for Korean Language Generation)

  • 송민채;신경식
    • 지능정보연구
    • /
    • 제28권4호
    • /
    • pp.309-328
    • /
    • 2022
  • 본 연구는 자연어처리의 분석목적과 추론데이터 성격에 적합한 한국어 사전훈련 언어모델의 특성을 실증분석했다. 이를 위해 자연어생성이 가능한 대표적 사전훈련 언어모델인 BART와 GPT 모델을 실험에 사용했다. 구체적으로 한국어 텍스트를 BART와 GPT 모델에 학습한 사전훈련 언어모델을 사용해 문서요약 생성 성능을 비교했다. 다음으로 추론데이터의 특성에 따라 언어모델의 성능이 어떻게 달라지는지 확인하기 위해 6가지 정보전달성과 4가지 창작물 유형의 한국어 텍스트 문서에 적용했다. 그 결과, 모든 문서유형에서 인코더와 디코더가 모두 있는 BART의 구조가 디코더만 있는 GPT 모델보다 더 높은 성능을 보였다. 추론데이터의 특성이 사전훈련 언어모델의 성능에 미치는 영향을 살펴본 결과, KoGPT는 데이터의 길이에 성능이 비례한 것으로 나타났다. 그러나 길이가 가장 긴 문서에 대해서도 KoGPT보다 KoBART의 성능이 높아 다운스트림 태스크 목적에 맞는 사전훈련 모델의 구조가 자연어생성 성능에 가장 크게 영향을 미치는 요소인 것으로 나타났다. 추가적으로 본 연구에서는 정보전달성과 창작물로 문서의 특징을 구분한 것 외에 품사의 비중으로 문서의 특징을 파악해 사전훈련 언어모델의 성능을 비교했다. 그 결과, KoBART는 어미와 형용사/부사, 동사의 비중이 높을수록 성능이 떨어진 반면 명사의 비중이 클수록 성능이 좋았다. 반면 KoGPT는 KoBART에 비해 품사의 비중과 상관도가 낮았다. 이는 동일한 사전훈련 언어모델이라도 추론데이터의 특성에 따라 자연어생성 성능이 달라지기 때문에 다운스트림 태스크에 사전훈련 언어모델 적용 시 미세조정 외에 추론데이터의 특성에 대한 고려가 중요함을 의미한다. 향후 어순 등 분석을 통해 추론데이터의 특성을 파악하고, 이것이 한국어 생성에 미치는 영향을 분석한다면 한국어 특성에 적합한 언어모델이나 자연어생성 성능 지표 개발이 가능할 것이다.

다중 비주얼 특징을 이용한 어학 교육 비디오의 자동 요약 방법 (Automatic Summary Method of Linguistic Educational Video Using Multiple Visual Features)

  • 한희준;김천석;추진호;노용만
    • 한국멀티미디어학회논문지
    • /
    • 제7권10호
    • /
    • pp.1452-1463
    • /
    • 2004
  • 양방향 방송 서비스로의 전환을 맞아 다양한 사용자 요구 및 기호에 적합한 컨텐츠를 제공하고, 증가하는 방송 컨텐츠를 효율적으로 관리, 이용하기 위해 비디오의 자동 에 대한 요구가 증가하고 있다. 본 논문에서는 내용 구성이 잘 갖추어진 어학 교육 비디오의 자동 에 대한 방법을 제안한다. 내용 기반을 자동으로 생성하기 위해 먼저 디지털 비디오로부터 샷 경계를 검출한 후, 각 샷을 대표하는 키프레임으로부터 비주얼 특징들을 추출한다. 그리고 추출된 다중 비주얼 특징을 이용해 어학 교육 비디오의 세분화된 내용 정보를 결정한다. 마지막으로, 결정된 내용 정보를 기술하는 요약문을 MPEG-7 MDS(Multimedia Description cheme)에 정의된 계층적 (Hierarchical Summary) 구조에 맞추어 XML 문서로 생성한다. 외국어 회화 비디오에 대해 실험하여 제안한 자동 방법의 효율성을 검증하였으며, 제안한 방법이 교육 방송용 컨텐츠의 다양한 서비스 제공 및 관리를 위한 비디오 요약 시스템에 효율적으로 적용 가능함을 확인하였다.

  • PDF

KR-WordRank : WordRank를 개선한 비지도학습 기반 한국어 단어 추출 방법 (KR-WordRank : An Unsupervised Korean Word Extraction Method Based on WordRank)

  • 김현중;조성준;강필성
    • 대한산업공학회지
    • /
    • 제40권1호
    • /
    • pp.18-33
    • /
    • 2014
  • A Word is the smallest unit for text analysis, and the premise behind most text-mining algorithms is that the words in given documents can be perfectly recognized. However, the newly coined words, spelling and spacing errors, and domain adaptation problems make it difficult to recognize words correctly. To make matters worse, obtaining a sufficient amount of training data that can be used in any situation is not only unrealistic but also inefficient. Therefore, an automatical word extraction method which does not require a training process is desperately needed. WordRank, the most widely used unsupervised word extraction algorithm for Chinese and Japanese, shows a poor word extraction performance in Korean due to different language structures. In this paper, we first discuss why WordRank has a poor performance in Korean, and propose a customized WordRank algorithm for Korean, named KR-WordRank, by considering its linguistic characteristics and by improving the robustness to noise in text documents. Experiment results show that the performance of KR-WordRank is significantly better than that of the original WordRank in Korean. In addition, it is found that not only can our proposed algorithm extract proper words but also identify candidate keywords for an effective document summarization.

기록관리 분야에서 한국어 자연어 처리 기술을 적용하기 위한 고려사항 (Considerations for Applying Korean Natural Language Processing Technology in Records Management)

  • 김학래
    • 한국기록관리학회지
    • /
    • 제22권4호
    • /
    • pp.129-149
    • /
    • 2022
  • 기록물은 과거와 현재를 포함하는 시간적 특성, 특정 언어에 제한되지 않는 언어적 특성, 기록물이 갖고 있는 다양한 유형을 복합적으로 갖고 있다. 기록물의 생성, 보존, 활용에 이르는 생애주기에서 텍스트, 영상, 음성으로 구성된 데이터의 처리는 많은 노력과 비용을 수반한다. 기계번역, 문서요약, 개체명 인식, 이미지 인식 등 자연어 처리 분야의 주요 기술은 전자기록과 아날로그 형태의 디지털화에 광범위하게 적용할 수 있다. 특히, 딥러닝 기술이 적용된 한국어 자연어 처리 분야는 다양한 형식의 기록물을 인식하고, 기록관리 메타데이터를 생성하는데 효과적이다. 본 논문은 한국어 자연어 처리를 기술을 소개하고, 기록 관리 분야에서 자연어 처리 기술을 적용하기 위한 고려사항을 논의한다. 기계번역, 광학문자인식과 같은 자연어 처리 기술이 기록물의 디지털 변환에 적용되는 과정은 파이썬 환경에서 구현한 사례로 소개한다. 한편, 자연어 처리 기술의 활용을 위해 기록관리 분야에서 자연어 처리 기술을 적용하기 위한 환경적 요소와 기록물의 디지털화 지침을 개선하기 위한 방안을 제안한다.