• 제목/요약/키워드: Document Summary

검색결과 86건 처리시간 0.027초

Machine Learning Based Automatic Categorization Model for Text Lines in Invoice Documents

  • Shin, Hyun-Kyung
    • 한국멀티미디어학회논문지
    • /
    • 제13권12호
    • /
    • pp.1786-1797
    • /
    • 2010
  • Automatic understanding of contents in document image is a very hard problem due to involvement with mathematically challenging problems originated mainly from the over-determined system induced by document segmentation process. In both academic and industrial areas, there have been incessant and various efforts to improve core parts of content retrieval technologies by the means of separating out segmentation related issues using semi-structured document, e.g., invoice,. In this paper we proposed classification models for text lines on invoice document in which text lines were clustered into the five categories in accordance with their contents: purchase order header, invoice header, summary header, surcharge header, purchase items. Our investigation was concentrated on the performance of machine learning based models in aspect of linear-discriminant-analysis (LDA) and non-LDA (logic based). In the group of LDA, na$\"{\i}$ve baysian, k-nearest neighbor, and SVM were used, in the group of non LDA, decision tree, random forest, and boost were used. We described the details of feature vector construction and the selection processes of the model and the parameter including training and validation. We also presented the experimental results of comparison on training/classification error levels for the models employed.

A Automatic Document Summarization Method based on Principal Component Analysis

  • Kim, Min-Soo;Lee, Chang-Beom;Baek, Jang-Sun;Lee, Guee-Sang;Park, Hyuk-Ro
    • Communications for Statistical Applications and Methods
    • /
    • 제9권2호
    • /
    • pp.491-503
    • /
    • 2002
  • In this paper, we propose a automatic document summarization method based on Principal Component Analysis(PCA) which is one of the multivariate statistical methods. After extracting thematic words using PCA, we select the statements containing the respective extracted thematic words, and make the document summary with them. Experimental results using newspaper articles show that the proposed method is superior to the method using either word frequency or information retrieval thesaurus.

다중 비주얼 특징을 이용한 어학 교육 비디오의 자동 요약 방법 (Automatic Summary Method of Linguistic Educational Video Using Multiple Visual Features)

  • 한희준;김천석;추진호;노용만
    • 한국멀티미디어학회논문지
    • /
    • 제7권10호
    • /
    • pp.1452-1463
    • /
    • 2004
  • 양방향 방송 서비스로의 전환을 맞아 다양한 사용자 요구 및 기호에 적합한 컨텐츠를 제공하고, 증가하는 방송 컨텐츠를 효율적으로 관리, 이용하기 위해 비디오의 자동 에 대한 요구가 증가하고 있다. 본 논문에서는 내용 구성이 잘 갖추어진 어학 교육 비디오의 자동 에 대한 방법을 제안한다. 내용 기반을 자동으로 생성하기 위해 먼저 디지털 비디오로부터 샷 경계를 검출한 후, 각 샷을 대표하는 키프레임으로부터 비주얼 특징들을 추출한다. 그리고 추출된 다중 비주얼 특징을 이용해 어학 교육 비디오의 세분화된 내용 정보를 결정한다. 마지막으로, 결정된 내용 정보를 기술하는 요약문을 MPEG-7 MDS(Multimedia Description cheme)에 정의된 계층적 (Hierarchical Summary) 구조에 맞추어 XML 문서로 생성한다. 외국어 회화 비디오에 대해 실험하여 제안한 자동 방법의 효율성을 검증하였으며, 제안한 방법이 교육 방송용 컨텐츠의 다양한 서비스 제공 및 관리를 위한 비디오 요약 시스템에 효율적으로 적용 가능함을 확인하였다.

  • PDF

복사 방법론과 입력 추가 구조를 이용한 End-to-End 한국어 문서요약 (End-to-end Korean Document Summarization using Copy Mechanism and Input-feeding)

  • 최경호;이창기
    • 정보과학회 논문지
    • /
    • 제44권5호
    • /
    • pp.503-509
    • /
    • 2017
  • 본 논문에서는 copy mechanism과 input feeding 추가한 RNN search 모델을 end-to-end 방식으로 한국어 문서요약에 적용하였다. 또한 시스템의 입출력으로 사용하는 데이터를 음절단위, 형태소단위, hybrid 단위의 토큰화 형식으로 처리하여 수행한 각각의 성능을 구하여, 모델과 토큰화 형식에 따른 문서요약 성능을 비교한다. 인터넷 신문기사를 수집하여 구축한 한국어 문서요약 데이터 셋(train set 30291 문서, development set 3786 문서, test set 3705문서)으로 실험한 결과, 형태소 단위로 토큰화 하였을 때 우수한 성능을 확인하였으며, GRU search에 input feeding과 copy mechanism을 추가한 모델이 ROUGE-1 35.92, ROUGE-2 15.37, ROUGE-L 29.45로 가장 높은 성능을 보였다.

문서 클러스터링을 이용한 문맥 광고 시스템 (Contextual Advertisement System based on Document Clustering)

  • 이동광;강인호;안동언
    • 정보처리학회논문지B
    • /
    • 제15B권1호
    • /
    • pp.73-80
    • /
    • 2008
  • 본 연구에서는 문서 클러스터링을 이용하여 동음 이의어와 핵심단어 선정 실패로 인해 발생하는 자동 광고 시스템의 오류를 해결하는 광고 키워드 추출방식을 제안한다. 먼저 대규모 뉴스기사를 대상으로 유사한 내용을 가지며 동일한 광고 키워드와 연관이 있는 기사들을 자동으로 분류하여 광고 키워드에 대한 문맥 정보를 구축한다. 또한 광고 대상물에 대한 광고주의 요약 정보나 광고 대상 웹페이지를 분석하여 광고 키워드에 대한 문맥 정보를 추출하는 방식을 보인다. 이렇게 구축된 문서 분류와 광고 키워드용 문맥 정보를 이용하여 광고 대상 문서가 속한 문서 분류를 추정하여 단어들의 의미적인 애매성을 해결하고, 추정한 문서 분류와 관련 있으면서 문맥적으로 중요성을 가지는 핵심 단어들을 선정하여 광고 키워드를 추출한다. 상용 광고 시스템과의 비교 분석 결과 신문 기사나 일반 블로그를 대상으로 최소 21%의 성능 향상을 얻었다.

Effectiveness of Fuzzy Graph Based Document Model

  • Aswathy M R;P.C. Reghu Raj;Ajeesh Ramanujan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권8호
    • /
    • pp.2178-2198
    • /
    • 2024
  • Graph-based document models have good capabilities to reveal inter-dependencies among unstructured text data. Natural language processing (NLP) systems that use such models as an intermediate representation have shown good performance. This paper proposes a novel fuzzy graph-based document model and to demonstrate its effectiveness by applying fuzzy logic tools for text summarization. The proposed system accepts a text document as input and identifies some of its sentence level features, namely sentence position, sentence length, numerical data, thematic word, proper noun, title feature, upper case feature, and sentence similarity. The fuzzy membership value of each feature is computed from the sentences. We also propose a novel algorithm to construct the fuzzy graph as an intermediate representation of the input document. The Recall-Oriented Understudy for Gisting Evaluation (ROUGE) metric is used to evaluate the model. The evaluation based on different quality metrics was also performed to verify the effectiveness of the model. The ANOVA test confirms the hypothesis that the proposed model improves the summarizer performance by 10% when compared with the state-of-the-art summarizers employing alternate intermediate representations for the input text.

텍스트와 그래픽으로 구성된 혼합문서 인식에 관한 연구 (A Study on the Recognition of Mixed Documents Consisting of Texts and Graphic Images)

  • 함영국;김인권;정홍규;박래홍;이창범;김상중;윤병남
    • 전자공학회논문지B
    • /
    • 제31B권7호
    • /
    • pp.76-90
    • /
    • 1994
  • In this paper, an efficient algorithm is proposed which recognizes the mixed document consisting of the printed Korean/alphanumeric texts and graphic images. In the preprocessing step an input document is aligned if necessary by rotating it. We obtain the rotation angle using the Hough transform and align the input document horizontally. Then we separate graphic image parts from text parts by considering chain codes of connected components. We further separate each character using vertical and horizontal projections. In the recognition step Korean and alphanumeric characters are classified and each of them is recognized hierarchically using several features. In summary an efficient recognition algorithm for mixed documents is proposed and its performance is demonstrated via computer simulations.

  • PDF

단일 문서의 인위적 요약과 MMR 통계요약의 비교 및 분석 (Analyses and Comparisons of Human and Statistic-based MMR Summarizations of Single Documents)

  • 유준현;변동률;박순철
    • 전자공학회논문지CI
    • /
    • 제41권2호
    • /
    • pp.43-50
    • /
    • 2004
  • 웹과 같은 대량의 문서집단에서 단일 문서에 대한 자동 요약은 일반적으로 통계요약 방법을 이용한다. 그러나 단순한 통계 요약 방법은 문서내의 빈도수가 높은 단어를 포함하는 문장들이 중복되어 나타날 확률이 높다. 이러한 단점을 보완하기 위하여 본 논문에서는 통계기반 요약방법에 MMR 기법을 적용하여 요약의 질을 향상시켰다(약 λ=0.6에서 최고의 성능을 보임). 또한 본 논문에서는 인위적 요약을 수행하여 MMR 통계기반의 요약 결과의 성능을 평가하였다.

주제 균형 지능형 텍스트 요약 기법 (Subject-Balanced Intelligent Text Summarization Scheme)

  • 윤여일;고은정;김남규
    • 지능정보연구
    • /
    • 제25권2호
    • /
    • pp.141-166
    • /
    • 2019
  • 최근 다양한 매체를 통해 생성되는 방대한 양의 텍스트 데이터를 효율적으로 관리 및 활용하기 위한 방안으로써 문서 요약에 대한 연구가 활발히 진행되고 있다. 특히 최근에는 기계 학습 및 인공 지능을 활용하여 객관적이고 효율적으로 요약문을 도출하기 위한 다양한 자동 요약 기법이(Automatic Summarization) 고안되고 있다. 하지만 현재까지 제안된 대부분의 텍스트 자동 요약 기법들은 원문에서 나타난 내용의 분포에 따라 요약문의 내용이 구성되는 방식을 따르며, 이와 같은 방식은 비중이 낮은 주제(Subject), 즉 원문 내에서 언급 빈도가 낮은 주제에 대한 내용이 요약문에 포함되기 어렵다는 한계를 갖고 있다. 본 논문에서는 이러한 한계를 극복하기 위해 저빈도 주제의 누락을 최소화하는 문서 자동 요약 기법을 제안한다. 구체적으로 본 연구에서는 (i) 원문에 포함된 다양한 주제를 식별하고 주제별 대표 용어를 선정한 뒤 워드 임베딩을 통해 주제별 용어 사전을 생성하고, (ii) 원문의 각 문장이 다양한 주제에 대응되는 정도를 파악하고, (iii) 문장을 주제별로 분할한 후 각 주제에 해당하는 문장들의 유사도를 계산한 뒤, (iv) 요약문 내 내용의 중복을 최소화하면서도 원문의 다양한 내용을 최대한 포함할 수 있는 자동적인 문서 요약 기법을 제시한다. 제안 방법론의 평가를 위해 TripAdvisor의 리뷰 50,000건으로부터 용어 사전을 구축하고, 리뷰 23,087건에 대한 요약 실험을 수행한 뒤 기존의 단순 빈도 기반의 요약문과 주제별 분포의 비교를 진행하였다. 실험 결과 제안 방법론에 따른 문서 자동 요약을 통해 원문 내각 주제의 균형을 유지하는 요약문을 도출할 수 있음을 확인하였다.

단어 간 의미적 연관성을 고려한 어휘 체인 기반의 개선된 자동 문서요약 방법 (An Improved Automatic Text Summarization Based on Lexical Chaining Using Semantical Word Relatedness)

  • 차준석;김정인;김판구
    • 스마트미디어저널
    • /
    • 제6권1호
    • /
    • pp.22-29
    • /
    • 2017
  • 최근 스마트 디바이스의 급속한 발달과 보급으로 인하여 인터넷 웹상에서 등장하는 문서의 데이터는 하루가 다르게 증가 하고 있다. 이러한 정보의 증가로 인터넷 웹상에서는 대량의 문서가 증가하여 사용자가 해당 문서의 데이터를 이해하는데, 어려움을 겪고 있다. 그렇기 때문에 자동 문서 요약 분야에서 문서를 효율적으로 요악하기 위해 다양한 연구가 진행 되고 있다. 효율적으로 문서를 요약하기 위해 본 논문에서는 텍스트랭크 알고리즘을 이용한다. 텍스트랭크 알고리즘은 문장 또는 키워드를 그래프로 표현하며, 단어와 문장 간의 의미적 연관성을 파악하기 위해 그래프의 정점과 간선을 이용하여 문장의 중요도를 파악한다. 문장의 상위 키워드를 추출 하고 상위 키워드를 기반으로 중요 문장 추출 과정을 거친다. 중요 문장 추출 과정을 거치기 위해 단어 그룹화 과정을 거친다. 단어그룹화는 특정 가중치 척도를 이용하여 가중치 점수가 높은 문장을 선별하여 선별된 문장들을 기반으로 중요 문장을 중요 문장을 추출하여, 문서를 요약을 하게 된다. 이를 통해 기존에 연구 되었던 문서요약 방법보다 향상된 성능을 보였으며, 더욱 효율적으로 문서를 요약할 수 있음을 증명하였다.