• Title/Summary/Keyword: Document Summary

Search Result 86, Processing Time 0.022 seconds

Improving the effectiveness of document extraction summary based on the amount of sentence information (문장 정보량 기반 문서 추출 요약의 효과성 제고)

  • Kim, Eun Hee;Lim, Myung Jin;Shin, Ju Hyun
    • Smart Media Journal
    • /
    • v.11 no.3
    • /
    • pp.31-38
    • /
    • 2022
  • In the document extraction summary study, various methods for selecting important sentences based on the relationship between sentences were proposed. In the Korean document summary using the summation similarity of sentences, the summation similarity of the sentences was regarded as the amount of sentence information, and the summary sentences were extracted by selecting important sentences based on this. However, the problem is that it does not take into account the various importance that each sentence contributes to the entire document. Therefore, in this study, we propose a document extraction summary method that provides a summary by selecting important sentences based on the amount of quantitative and semantic information in the sentence. As a result, the extracted sentence agreement was 58.56% and the ROUGE-L score was 34, which was superior to the method using only the combined similarity. Compared to the deep learning-based method, the extraction method is lighter, but the performance is similar. Through this, it was confirmed that the method of compressing information based on semantic similarity between sentences is an important approach in document extraction summary. In addition, based on the quickly extracted summary, the document generation summary step can be effectively performed.

Automatic Single Document Text Summarization Using Key Concepts in Documents

  • Sarkar, Kamal
    • Journal of Information Processing Systems
    • /
    • v.9 no.4
    • /
    • pp.602-620
    • /
    • 2013
  • Many previous research studies on extractive text summarization consider a subset of words in a document as keywords and use a sentence ranking function that ranks sentences based on their similarities with the list of extracted keywords. But the use of key concepts in automatic text summarization task has received less attention in literature on summarization. The proposed work uses key concepts identified from a document for creating a summary of the document. We view single-word or multi-word keyphrases of a document as the important concepts that a document elaborates on. Our work is based on the hypothesis that an extract is an elaboration of the important concepts to some permissible extent and it is controlled by the given summary length restriction. In other words, our method of text summarization chooses a subset of sentences from a document that maximizes the important concepts in the final summary. To allow diverse information in the summary, for each important concept, we select one sentence that is the best possible elaboration of the concept. Accordingly, the most important concept will contribute first to the summary, then to the second best concept, and so on. To prove the effectiveness of our proposed summarization method, we have compared it to some state-of-the art summarization systems and the results show that the proposed method outperforms the existing systems to which it is compared.

A Document Summary System based on Personalized Web Search Systems (개인화 웹 검색 시스템 기반의 문서 요약 시스템)

  • Kim, Dong-Wook;Kang, Soo-Yong;Kim, Han-Joon;Lee, Byung-Jeong;Chang, Jae-Young
    • Journal of Digital Contents Society
    • /
    • v.11 no.3
    • /
    • pp.357-365
    • /
    • 2010
  • Personalized web search engine provides personalized results to users by query expansion, re-ranking or other methods representing user's intention. The personalized result page includes URL, page title and small text fragment of each web document. which is known as snippet. The snippet is the summary of the document which includes the keywords issued by either user or search engine itself. Users can verify the relevancy of the whole document using only the snippet, easily. The document summary (snippet) is an important information which makes users determine whether or not to click the link to the whole document. Hence, if a search engine generates personalized document summaries, it can provide a more satisfactory search results to users. In this paper, we propose a personalized document summary system for personalized web search engines. The proposed system provides increased degree of satisfaction to users with marginal overhead.

Document Summarization via Convex-Concave Programming

  • Kim, Minyoung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.293-298
    • /
    • 2016
  • Document summarization is an important task in various areas where the goal is to select a few the most descriptive sentences from a given document as a succinct summary. Even without training data of human labeled summaries, there has been several interesting existing work in the literature that yields reasonable performance. In this paper, within the same unsupervised learning setup, we propose a more principled learning framework for the document summarization task. Specifically we formulate an optimization problem that expresses the requirements of both faithful preservation of the document contents and the summary length constraint. We circumvent the difficult integer programming originating from binary sentence selection via continuous relaxation and the low entropy penalization. We also suggest an efficient convex-concave optimization solver algorithm that guarantees to improve the original objective at every iteration. For several document datasets, we demonstrate that the proposed learning algorithm significantly outperforms the existing approaches.

Automatic Document Summary Technique Using Fuzzy Theory (퍼지이론을 이용한 자동문서 요약 기술)

  • Lee, Sanghoon;Moon, Seung-Jin
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.12
    • /
    • pp.531-536
    • /
    • 2014
  • With the very large quantity of information available on the Internet, techniques for dealing with the abundance of documents have become increasingly necessary but the problem of processing information in the documents is still technically challenging and remains under study. Automatic document summary techniques have been considered as one of critical solutions for processing documents to retain the important points and to remove duplicated contents of the original documents. In this paper, we propose a document summarization technique that uses a fuzzy theory. Proposed summary technique solves the ambiguous problem of various features determining the importance of the sentence and the experiment result shows that the technique generates better results than other previous techniques.

Multi-Document Summarization Method of Reviews Using Word Embedding Clustering (워드 임베딩 클러스터링을 활용한 리뷰 다중문서 요약기법)

  • Lee, Pil Won;Hwang, Yun Young;Choi, Jong Seok;Shin, Young Tae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.11
    • /
    • pp.535-540
    • /
    • 2021
  • Multi-document refers to a document consisting of various topics, not a single topic, and a typical example is online reviews. There have been several attempts to summarize online reviews because of their vast amounts of information. However, collective summarization of reviews through existing summary models creates a problem of losing the various topics that make up the reviews. Therefore, in this paper, we present method to summarize the review with minimal loss of the topic. The proposed method classify reviews through processes such as preprocessing, importance evaluation, embedding substitution using BERT, and embedding clustering. Furthermore, the classified sentences generate the final summary using the trained Transformer summary model. The performance evaluation of the proposed model was compared by evaluating the existing summary model, seq2seq model, and the cosine similarity with the ROUGE score, and performed a high performance summary compared to the existing summary model.

Document Summarization using Topic Phrase Extraction and Query-based Summarization (주제어구 추출과 질의어 기반 요약을 이용한 문서 요약)

  • 한광록;오삼권;임기욱
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.4
    • /
    • pp.488-497
    • /
    • 2004
  • This paper describes the hybrid document summarization using the indicative summarization and the query-based summarization. The learning models are built from teaming documents in order to extract topic phrases. We use Naive Bayesian, Decision Tree and Supported Vector Machine as the machine learning algorithm. The system extracts topic phrases automatically from new document based on these models and outputs the summary of the document using query-based summarization which considers the extracted topic phrases as queries and calculates the locality-based similarity of each topic phrase. We examine how the topic phrases affect the summarization and how many phrases are proper to summarization. Then, we evaluate the extracted summary by comparing with manual summary, and we also compare our summarization system with summarization mettled from MS-Word.

Comparison and analysis of artificial summary and statistical algorithm of document (문서의 인위적 요약과 통계적 알고리즘의 비교 및 분석)

  • 김유식;유준현;박순철
    • Proceedings of the IEEK Conference
    • /
    • 2003.07d
    • /
    • pp.1255-1258
    • /
    • 2003
  • Today with the sheep of information which is produced the variety is increasing geometrical progression. To recently the internet being supplied quickly, will reach and the computer users whom it uses increase and the documents which have become digital anger are increasing. From the dissertation which it sees directness it extracts a weight with possibility work and it uses it summarizes a statistics algorithm technique and a sentence. The summary literature course which the summary and the person due to a statistics algorithm summarize an agreement ratio it compares and it compares. And being more accurate like this statistical base summary method more little more, the good hit rate is high and it proposes the document summary algorithm method which is good.

  • PDF

An Archival Study on the Arrangement and Description of Old Document(Diploma) (고문서 정리(整理)에 대한 기록학적 연구 - 새로운 고문서 정리 방법의 모색을 위하여 -)

  • Cho, Kyung-Koo
    • The Korean Journal of Archival Studies
    • /
    • no.7
    • /
    • pp.37-74
    • /
    • 2003
  • An Old document(Diploma) is a historical and unique record, so it must be collected, arranged, and preserved for research as soon as possible. Especially, for the effective use of the Old Document(Diploma), it is needed to arrange and describe the material systematically on the ground of modern archival theory. The Kyujanggak Archives in the Seoul National University has published 23 volumes of Old document(Diploma) material Old Document(Diploma). But they seem to cause the readers inconvenience, because the materials are classified and gathered only by genre, the titles or the orders of the materials are not standardized, and there is no description about the content of each Old document(Diploma). Jangseo-gak Library in The Academy of Korean Studies has also published the series of Old document(Diploma) material Old Document(Diploma) Collection. However the case is not different, since they are all mixed up with materials classified and gathered by genre, family, academy, or local school. And a great part of the materials have no titles and no description about the content of each Old document(Diploma), either. About the arrangement and description of the records, European and American archival science has established the theory of l)the principle of provenance, 2)the principle of original order, 3)levels of control, 4)collective description. These theories are valuable for the effective use of Old document(Diploma). On the viewpoint of the principle of provenance, Old document(Diploma) materials should not be classified by subject and genre, but by family and person. Then, the Old document(Diploma) materials, after collected by the unit of family or person on the viewpoint of the principle of provenance, should be arranged in their original order for more detailed arrangement and furthermore, for the work to find their relationship. This is so called the principle of original order. The hierarchical management of the Old document(Diploma) materials, for example, classifying by record group, sub-group, series, item and so on, is the concept of the levels of control, and comprehensive description of the each hierarchical structure is the concept of the collective description. Let's apply these archival theories to 34 pieces of the Chung, Man-Seok's material in the series of Old document(Diploma) material Old Document(Diploma). First, collect the Old document(Diploma) materials into Chung, Man-Seok's collection(the principle of provenance), which were scattered in the series classified by genre. Secondly, rearrange them chronologically(the principle of original order), and then we can find the comprehensive information about Chung, Man-Seok. For the hierarchical management of the Old document(Diploma) materials, we should establish a few concepts from the general, large group to specific, small item. The concepts can be organized as following; l)record group(Chung, Man-Seok record group) - 2)sub-group(personnel document, property document, family document, social activity document, political activity document, etc) - 3)series(gyoji-series, gyoseo-series, yuji-series etc. in the personnel document) - 4)folder(document with additions) - 5)item(one document). According to the the theory of the collective description, in the level of record group, there should be a collective description of Chung, Man-Seok's biography or a summary of record group. Similarly, there should be a collective description of a summary of sub-group in the level of sub-group and a summary of series in the level of series.

Automatic Quality Evaluation with Completeness and Succinctness for Text Summarization (완전성과 간결성을 고려한 텍스트 요약 품질의 자동 평가 기법)

  • Ko, Eunjung;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.125-148
    • /
    • 2018
  • Recently, as the demand for big data analysis increases, cases of analyzing unstructured data and using the results are also increasing. Among the various types of unstructured data, text is used as a means of communicating information in almost all fields. In addition, many analysts are interested in the amount of data is very large and relatively easy to collect compared to other unstructured and structured data. Among the various text analysis applications, document classification which classifies documents into predetermined categories, topic modeling which extracts major topics from a large number of documents, sentimental analysis or opinion mining that identifies emotions or opinions contained in texts, and Text Summarization which summarize the main contents from one document or several documents have been actively studied. Especially, the text summarization technique is actively applied in the business through the news summary service, the privacy policy summary service, ect. In addition, much research has been done in academia in accordance with the extraction approach which provides the main elements of the document selectively and the abstraction approach which extracts the elements of the document and composes new sentences by combining them. However, the technique of evaluating the quality of automatically summarized documents has not made much progress compared to the technique of automatic text summarization. Most of existing studies dealing with the quality evaluation of summarization were carried out manual summarization of document, using them as reference documents, and measuring the similarity between the automatic summary and reference document. Specifically, automatic summarization is performed through various techniques from full text, and comparison with reference document, which is an ideal summary document, is performed for measuring the quality of automatic summarization. Reference documents are provided in two major ways, the most common way is manual summarization, in which a person creates an ideal summary by hand. Since this method requires human intervention in the process of preparing the summary, it takes a lot of time and cost to write the summary, and there is a limitation that the evaluation result may be different depending on the subject of the summarizer. Therefore, in order to overcome these limitations, attempts have been made to measure the quality of summary documents without human intervention. On the other hand, as a representative attempt to overcome these limitations, a method has been recently devised to reduce the size of the full text and to measure the similarity of the reduced full text and the automatic summary. In this method, the more frequent term in the full text appears in the summary, the better the quality of the summary. However, since summarization essentially means minimizing a lot of content while minimizing content omissions, it is unreasonable to say that a "good summary" based on only frequency always means a "good summary" in its essential meaning. In order to overcome the limitations of this previous study of summarization evaluation, this study proposes an automatic quality evaluation for text summarization method based on the essential meaning of summarization. Specifically, the concept of succinctness is defined as an element indicating how few duplicated contents among the sentences of the summary, and completeness is defined as an element that indicating how few of the contents are not included in the summary. In this paper, we propose a method for automatic quality evaluation of text summarization based on the concepts of succinctness and completeness. In order to evaluate the practical applicability of the proposed methodology, 29,671 sentences were extracted from TripAdvisor 's hotel reviews, summarized the reviews by each hotel and presented the results of the experiments conducted on evaluation of the quality of summaries in accordance to the proposed methodology. It also provides a way to integrate the completeness and succinctness in the trade-off relationship into the F-Score, and propose a method to perform the optimal summarization by changing the threshold of the sentence similarity.