본 논문은 문서 영상에 존재하는 개별 단어들에 대한 속성정보 추출 방법을 제안한다. 단어 단위의 속성 인식은 단어 영상 매칭의 정확도 및 속도 개선, OCR 시스템에서 인식률 향상, 문서의 재생산 등 다양한 응용 가치를 찾을 수 있으며, 메타정보(meta-information) 추출을 통해 영상 검색(image retrieval)이나 요약(summary) 생성 등에 활용할 수 있다. 제안하는 시스템에서 고려하는 단어 영상의 속성은 언어의 종류(한글, 영문), 스타일(볼드, 이탤릭, 보통, 밑줄), 문자 크기(10, 12, 14 포인트), 문자 개수 (한글: 2, 3, 4, 5, 영문: 4, 5, 6, 7, 8, 9, 10), 서체(명조, 고딕)의 다섯 가지 정보이다. 속성 인식을 위한 특징은, 언어 종류 인식에 2개, 스타일 인식에 3개, 문자 크기와 개수는 각각 1개, 한글 서체 인식은 1개, 영문 서체 인식은 2개를 사용한다. 분류기는 신경망, 2차형 판별함수(QDF), 선형 판별함수(LDF)를 계층적으로 구성한다. 다섯 가지 속성이 조합된 26,400개의 단어 영상을 사용한 실험을 통해, 제안된 방법이 소수의 특징만으로도 우수한 속성 인식 성능을 보임을 입증하였다.