According to the fast growth of information on the Internet, it is becoming increasingly difficult to find and organize useful information. To reduce information overload, it needs to exploit automatic text classification for handling enormous documents. Support Vector Machine (SVM) is a model that is calculated as a weighted sum of kernel function outputs. This paper describes a document classifier for web documents in the fields of Information Technology and uses SVM to learn a model, which is constructed from the training sets and its representative terms. The basic idea is to exploit the representative terms meaning distribution in coherent thematic texts of each category by simple statistics methods. Vector-space model is applied to represent documents in the categories by using feature selection scheme based on TFiDF. We apply a category factor which represents effects in category of any term to the feature selection. Experiments show the results of categorization and the correlation of vector length.
이 논문의 목적은 SVM(지지벡터기계) 분류기의 성능을 문헌간 유사도를 이용해서 향상시키는 것이다. SVM은 효과적인 기계학습 시스템으로서 최고 수준의 문헌자동분류 기술로 인정받고 있다. 이 연구에서는 문헌 벡터 자질 표현에 기반한 SVM 문헌자동분류를 제안하였다. 제안한 방식은 분류 자질로 색인어 대신 문헌 벡터를, 자질 값으로 가중치 대신 벡터유사도를 사용한다. 제안한 방식에 대한 실험 결과, SVM 분류기의 성능을 향상시킬 수 있었다. 실행 효율 향상을 위해서 문헌 벡터 자질 선정 방안과 범주 센트로이드 벡터를 사용하는 방안을 제안하였다. 실험 결과 소규모의 벡터 자질 집합만으로도 색인어 자질을 사용하는 기존 방식보다 나은 성능을 얻을 수 있었다.
Kim, Tae-young;Kim, Suntae;Choi, Sangchul;Kim, Jeong-Ah;Choi, Jae-Young;Ko, Jong-Won;Lee, Jee-Huong;Cho, Youngwha
KSII Transactions on Internet and Information Systems (TIIS)
/
제11권2호
/
pp.1043-1056
/
2017
A styled document is a document that contains diverse decorating functions such as different font, colors, tables and images generally authored in a word processor (e.g., MS-WORD, Open Office). Compared to a plain-text document, a styled document enables a human to easily recognize a logical structure such as section, subsection and contents of a document. However, it is difficult for a computer to recognize the structure if a writer does not explicitly specify a type of an element by using the styling functions of a word processor. It is one of the obstacles to enhance document version management systems because they currently manage the document with a file as a unit, not the document elements as a management unit. This paper proposes a machine learning based approach to analyzing the logical structure of a styled document composing of sections, subsections and contents. We first suggest a feature vector for characterizing document elements from a styled document, composing of eight features such as font size, indentation and period, each of which is a frequently discovered item in a styled document. Then, we trained machine learning classifiers such as Random Forest and Support Vector Machine using the suggested feature vector. The trained classifiers are used to automatically identify logical structure of a styled document. Our experiment obtained 92.78% of precision and 94.02% of recall for analyzing the logical structure of 50 styled documents.
한국은 다른 나라에 비해 많은 인터넷 사용자를 가지고 있다. 이에 비례해서 한국의 인터넷 유저들은 Spam Mail에 대해 많은 불편함을 호소하고 있다. 이러한 문제를 해결하기 위해 본 논문은 다양한 Feature Weighting, Feature Selection 그리고 문서 분류 알고리즘들을 이용한 한국어 스팸 문서 Filtering연구에 대해 기술한다. 그리고 한국어 문서(Spam/Non-Spam 문서)로부터 영사를 추출하고 이를 각 분류 알고리즘의 Input Feature로써 이용한다. 그리고 우리는 Feature weighting 에 대해 기존의 전통적인 방법이 아니라 각 Feature에 대해 Variance 값을 구하고 Global Feature를 선택하기 위해 Max Value Selection 방법에 적용 후에 전통적인 Feature Selection 방법인 MI, IG, CHI 들을 적용하여 Feature들을 추출한다. 이렇게 추출된 Feature들을 Naive Bayes, Support Vector Machine과 같은 분류 알고리즘에 적용한다. Vector Space Model의 경우에는 전통적인 방법 그대로 사용한다. 그 결과 우리는 Support Vector Machine Classifier, TF-IDF Variance Weighting(Combined Max Value Selection), CHI Feature Selection 방법을 사용할 경우 Recall(99.4%), Precision(97.4%), F-Measure(98.39%)의 성능을 보였다.
문서분류에 있어서 분류속도의 향상이 중요한 연구과제가 되고 있다. 최근 개발된 자질값투표 기법은 문서자동분류 문제에 대해서 매우 빠른 속도를 가졌지만, 분류정확도는 만족스럽지 못하다. 이 논문에서는 새로운 자질선정 기법인 문서측 자질선정 기법을 제안하고, 이를 자질값투표 기법에 적용해 보았다. 문서측 자질선정은 일반적인 분류자질선정과 달리 학습집단이 아닌 분류대상 문서의 자질 중 일부만을 선택하여 분류에 이용하는 방식이다. 문서측 자질선정을 적용한 실험에서는, 간단하고 빠른 자질값투표 분류기로 SVM 분류기만큼 좋은 성능을 얻을 수 있었다.
International Journal of Computer Science & Network Security
/
제24권4호
/
pp.113-118
/
2024
Pursuance Sentiment Analysis on Twitter is difficult then performance it's used for great review. The present be for the reason to the tweet is extremely small with mostly contain slang, emoticon, and hash tag with other tweet words. A feature extraction stands every technique concerning structure and aspect point beginning particular tweets. The subdivision in a aspect vector is an integer that has a commitment on ascribing a supposition class to a tweet. The cycle of feature extraction is to eradicate the exact quality to get better the accurateness of the classifications models. In this manuscript we proposed Term Frequency-Inverse Document Frequency (TF-IDF) method is to secure Principal Component Analysis (PCA) with Naïve Bayes Classifiers. As the classifications process, the work proposed can produce different aspects from wildly valued feature commencing a Twitter dataset.
본 논문은 한국어 문서감정 분류에서 각 문장의 감정 정도의 차이를 고려하여 자질의 가중치를 계산하는 방법을 제안한다. 감정자질은 어휘 자원으로서 감정을 가지는 단어들의 집합이며, 학습데이터를 이용하여 이 감정자질의 카이제곱 통계량 값(${\chi}^2$ statistic)을 얻을 수 있다. 이렇게 얻어진 카이제곱 통계량 값으로 문서에서 출현한 각 문장의 감정강도를 수치화 할 수 있다. 각 문장의 감정강도는 문서에서 가장 강한 감정을 가진 문장에 근한 비율로 계산되며, 이 값을 TF-IDF 가중치 기법에 적용하여 최종적인 자질의 가중치를 결정하게 된다. 그리고 일반적으로 문서 분류에서 뛰어난 성능을 보여주는 지지벡터기계(Support Vector Machine)를 사용하여 기계학습을 수행한 후 성능을 평가한다. 성능평가에서 제안된 기법은 문장감정의 강도를 고려하지 않은 내용어(Content Word) 기반의 자질을 사용한 경우보다 약 2.0%의 성능향상을 얻었다.
기존의 문서 검색 방법론은 TF-IDF와 같은 벡터공간모델을 활용한 키워드 기반 방법론을 사용한다. 키워드 기반의 문서검색방법론으로는 문제가 몇몇 문제점이 나타날 수 있다. 먼저 몇 개의 키워드로 전체의 의미를 나타내기 힘들 수 있다. 또 기존의 키워드 기반의 방법론을 사용하면 의미상으로 비슷하지만 모양이 다른 동의어를 사용한 문서의 경우 두 문서 간에 일치하는 단어들의 특성치만 고려하여 관련이 있는 문서를 제대로 검색하지 못하거나 그 유사도를 낮게 평가할 수 있다. 본 연구는 문서를 기반으로 한 검색방법을 제안한다. Centrality를 사용해 쿼리 문서의 특성 벡터를 구하고 Word2vec알고리즘을 사용하여 단어의 모양이 아닌 단어의 의미를 고려할 수 있는 특성 벡터를 만들어 검색 성능의 향상과 더불어 유사한 단어를 사용한 문서를 찾을 수 있다.
최근 감정 분류에 대한 관심이 높아져 연구가 활발히 진행되고 있다. 문서 전체에 관한 감정의 분류도 중요하지만, 문서를 이루고 있는 문장에 관한 분류도 점차 그 필요성이 높아지고 있다. 본 논문에서는 한국어 감정 분류 시스템 구축을 위해서 추출된 한국어 감정 자질을 이용한 한국어 문장 및 문서 감정 분류에 관해 연구한다. 한국어 감정 분류의 시작은 감정을 내포한 대표적인 어휘로부터 시작하며, 이와 같은 감정 자질들은 문장 및 문서의 감정을 분류하는데 결정적인 관여를 한다. 한국어 감정 자질의 추출을 위하여 영어 단어 시소러스 정보를 이용하여 자질들을 확장하고, 영한사전을 통해 확장된 자질들을 번역함으로써 감정 자질들을 추출하였다. 추출된 감정 자질들을 사용하여, 단어 벡터로 표현된 입력문서를 이진 분류기인 지지벡터 기계(SVM: Support Vector Machine)를 이용하여 문장과 문서에 내포된 감정을 판단하고 평가하였다.
본 논문에서는 역전파 신경망 알고리즘(BPNN: Back Propagation Neural Network)과 Singular Value Decomposition(SVD)를 이용하는 한글 문서 분류 시스템을 제안한다. BPNN은 학습을 통하여 만들어진 네트워크를 이용하여 문서분류를 수행한다. 이 방법의 어려움은 분류기에 입력되는 특징 공간이 너무 크다는 것이다. SVD를 이용하면 고차원의 벡터를 저차원으로 줄일 수 있고, 또한 의미있는 벡터 공간을 만들어 단어 사이의 중요한 관계성을 구축할 수 있다. 본 논문에서 제안한 BPNN의 성능 평가를 위하여 한국일보-2000/한국일보-40075 문서범주화 실험문서집합의 데이터 셋을 이용하였다. 실험결과를 통하여 BPNN과 SVD를 사용한 시스템이 한글 문서 분류에 탁월한 성능을 가지는 것을 보여준다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.