• Title/Summary/Keyword: Doctor-blade

Search Result 79, Processing Time 0.026 seconds

Approximate Modeling of Doctor Blade Contact Pressure for Realization of Uniform Image Quality (균일 화상 품질 구현을 위한 닥터 블레이드 접촉압력 근사모델링)

  • Choi, Ha-Young;Park, Seung Chan;Lee, Jongsoo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.241-247
    • /
    • 2013
  • The doctor blade is equipped in a toner cartridge and is a device to maintain the uniform thickness of a toner by controlling the pressure on the developing roller. The contact pressure between the developing roller and the doctor blade is one of the significant factors for image quality and durability of toner cartridge. The purpose of this study is to develop approximation model in order to minimize the time and cost which are needed much required in making optimal design of the doctor blade. Central composite design was used for the design of experiment and response surface design was used for approximation. The data for contact pressure were acquired through finite element analysis and data of image density and toner weight were acquired through experiment. The approximation model developed in this study has presented very high fitness.

Doctor Blade Tape Casting of In-based Low Melting Point Alloy (In 계 저융점합금의 닥터 블레이드 테이프캐스팅)

  • Youn, Ki-Byoung
    • Journal of Korea Foundry Society
    • /
    • v.35 no.3
    • /
    • pp.62-66
    • /
    • 2015
  • Tape casting is an important forming operation used to prepare flat sheets in the various industries. In this study, Doctor Blade tape casting of In-based low melting point alloy was carried out. The purpose of this investigation was to determine the possibility of applying the Doctor Blade tape casting process to the manufacture of low melting point alloy sheets that can be used as thermal fusible parts of battery safety systems. In-based molten alloy that has a melting point of $95^{\circ}C$ was produced; it's viscosity was measured at various temperatures. The molten alloy was used as a slip in the caster of the Doctor Blade tape casting system. The effects of the molten alloy temperatures and carrier speeds on the produced sheet shape were observed. For the casting conditions of 1.5 cm slip height, $120^{\circ}C$ slip temperature, 0.05 mm blade gap and 60 m/min. carrier speed, an In-based alloy thin tape well shaped with 0.16 mm uniform thickness was continuously produced.

A Study of CIGS Coated Thin-Film Layer using Doctor Blade Process (Doctor blade를 이용한 용액형 CIGS 균일 코팅에 관한 연구)

  • Yu, Jong-Su;Yoon, Seong Man;Kim, Do-Jin;Jo, Jeongdai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.93.2-93.2
    • /
    • 2010
  • Recently, printing and coating technologies application fields have been expanded to the energy field such as solar cell. One of the main reasons, why many researchers have been interested in printing technology as a manufacturing method, is the reduction of manufacturing cost. In this paper, We fabricated CIGS solar cell thin film layer by doctor blade methods using synthesis of CIS precursor nanoparticles ink on molybdenum (Mo) coated soda-lime glass substrate. Synthesis CIS precursor nanoparticles ink fabrication was mixed Cu, In, Se powder and Ethylenediamine, using microwave and centrifuging. Using multi coating process as we could easily fabrication a fine flatness CIS thin-film layer ($0.7{\sim}1.35{\mu}m$), and reduce a manufacture cost and process steps. Also if we use printing and coating method and solution process in each layer of CIGS solar cell (electrode, buffer), it is possible to fabricate all printed thin-film solar cell.

  • PDF

Automated Production System for Manufacturing the Doctor Blades of Laser Printers (레이저프린터용 닥터 블레이드 생산 자동화)

  • Jun, Sung-Hoon;Lee, Eung-Ki
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.633-638
    • /
    • 2012
  • The doctor blade is a core part of a laser printer and directly influences the printing quality. The main specifications for doctor blades ate for them to be precise and durable. It is necessary to study an automatic production system for doctor blades in order to obtain high-efficient manufacturing processes. In this paper, the technology and the design of the automatic production line has for manufacturing doctor blades has been researched. The automated manufacturing process consists of five steps, which are the supplying of raw material, shearing, bending, bracket supplying, and the laser-spot welding process. The proposed automatic manufacturing system allowed for faster and more reliable production of doctor blades.

The Effects of Doctoring Process in Gravure Off-set Printing on Patterning of Electrodes with Ag Ink (은 잉크를 이용한 그라비아 오프셋의 전극인쇄에서 닥터링 공정의 영향)

  • Choi, Ki Seong;Park, Jin Seok;Song, Chung-Kun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.6
    • /
    • pp.462-467
    • /
    • 2013
  • In this paper, we analyzed the effects of doctoring process on the patterns of Ag ink in gravure off-set printing. The parameters of doctoring process were the angle and the pressure, which was represented by the depth of blade movement to the gravure roll, of doctor blade to the surface of gravure roll, and the angle of patterns engraved on the gravure roll to the doctor blade moving direction. The proper parameters were extracted for the fine patterns and they were 15 mm for the pressure, $60^{\circ}$ for the blade angle. And the angle of patterns with respect to the blade movement should be less than $40^{\circ}$ for the best results. The gravure off-set printing with the above parameters was carried out to print gate electrodes and scan bus lines of OTFT-backplane for e-paper. The line width of $50{\mu}m$ was successfully obtained. The thickness of electrodes was $2.5{\mu}m$ and the surface roughness was $0.65{\mu}m$ and the sheet resistance was $15.8{\Omega}/{\Box}$.

Fabrication of Ceramic Heat Exchanger Cores by Doctor Blade Process (Doctor blade 공정에 의한 세라믹스 열교환기 소자의 제조)

  • 김상우;송휴섭;장성도
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.3
    • /
    • pp.241-251
    • /
    • 1992
  • The effects of slip composition and processing conditions on the fabrication of ceramic heat exchanger cores by doctor blade process were investigated. Since the effects of those two variables were inter-dependent, the effects of binder system, binder plus plasticizer, were extensively studied for a limited range of processing conditions and a pre-determined ceramic composition. The content of binder system and the ratio of binder to plasticizer were identified as main variables to affect densities and mechanical properties of green sheets, compressive properties and bond strengths of laminates, and shrinkages and their anisotropy of sintered laminates. However, sintered densities and water absorptions of laminates were not influenced by either the content of binder system or the ratio of binder to plasticizer, when the debinded laminates had a relatively high density (relative density of >55% in this study).

  • PDF

Design and Fabrication of Doctor Blade Type Dispensers for Uniform Resin Coating during Roll to Roll Imprinting Process (롤투롤 임프린트 공정 중 균일한 레진 코팅을 위한 닥터블레이드형 디스펜서 설계 및 제작)

  • Son, Hee Chul;Kim, Seong Woo;Lee, Jihoon;Park, Cheol Woo;Kwak, Moon Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.10
    • /
    • pp.897-902
    • /
    • 2015
  • This study reports on a uniform resin coating method by using a doctor blade type dispenser. For high productivity, continuous imprint-lithography has been studied, and developed fabrication systems are used in several applications such as anti-reflection films, dry adhesives, and water collecting surfaces. In the continuous fabrication field, researchers have typically focused on patterning and demolding procedures. During the roll-to-roll fabrication process, however, the uniform resin coating process is also important in order to obtain a high quality product, which can be evaluated by uniform thickness, precise geometric expressions, and a thin residual layer. To achieve these, a doctor blade type dispenser was designed and fabricated. As a result, thickness of coated resin was well controlled by modulating the flow rate of the resin and blading gap. In addition, a very thin layer coating process (${\sim}10{\mu}m$) was achieved by softly contacting the blade on the substrate.

Fabrication and Piezoelectric Strain Characteristics of PLZT Functionally Gradient Piezoelectric Actuator by Doctor Blade Process (닥터블레이드법에 의한 PLZT계 경사기능 압전 엑튜에이터의 제조와 압전 변위 특성)

  • 김한수;최승철;이전국;정형진
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.9
    • /
    • pp.695-704
    • /
    • 1992
  • In (Pb, La)(Zr, Ti)O3 ceramic system, the functionally gradient material (FGM) was developed, and its processing and properties were investigated. The FGMs were successfully prepared through doctor blade method with acrylic binder system as well as mold stacking press method. The ultrasonic treatment was very effective for particle dispersion in slurry, and it lead to form clack-free green films. The strain-voltage characteristics of the FGM system was significantly improved which fabricated between a high piezoelectric-low dielectric and a low piezoelectric-high dielectric composition layer.

  • PDF

High Power Characteristics of Amorphous $MnO_2$ Electrode by Variation of Electrode Thickness (비정질 $MnO_2$ 전극의 전극두께에 따른 고출력 특성 변화)

  • Seong W. K.;Kim E. S.;Lee H. Y.;Kim S. W.
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.4
    • /
    • pp.235-240
    • /
    • 2000
  • Screen-printing and doctor blade method were investigated and proposed as an electrode coating process for high power capacitor. CV measured from the amorphous $MnO_2$ electrode prepared by screen-printing shows closer to ideal capacitor characteristics. Specific capacitances calculated from CVs with potential scan rate of 50mV/s were 5.8, 81.8, and 172.0 F/g for electrode thickness of $140{\mu}m,\;24{\mu}m,\; 3{\mu}m$, respectively. Assumed that utilization of active $MnO_2$ in electrode of screen-printing is $100\%$, those were $3.4\%$ in one of paste method and $47.6\%$ in one of doctor blade method. The screen-printing can be good technique to coat thin film on current collector for high power application.