• Title/Summary/Keyword: Dixon's summation formula for $_3F_2$

Search Result 5, Processing Time 0.017 seconds

GENERALIZATIONS OF CERTAIN SUMMATION FORMULA DUE TO RAMANUJAN

  • Song, Hyeong-Kee;Kim, Yong-Sup
    • Honam Mathematical Journal
    • /
    • v.34 no.1
    • /
    • pp.35-44
    • /
    • 2012
  • Motivated by the extension of classical Dixon's summation theorem for the series $_3F_2$ given by Lavoie, Grondin, Rathie and Arora, the authors aim at deriving four generalized summation formulas, which, upon specializing their parameters, give many summation identities including, especially, the four very interesting summation formulas due to Ramanujan.

Generalizations of Dixon's and Whipple's Theorems on the Sum of a 3F2

  • Choi, Junesang;Malani, Shaloo;Rathie, Arjun K.
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.3
    • /
    • pp.449-454
    • /
    • 2007
  • InIn this paper we consider generalizations of the classical Dixon's theorem and the classical Whipple's theorem on the sum of a $_3F_2$. The results are derived with the help of generalized Watson's theorem obtained earlier by Mitra. A large number of results contiguous to Dixon's and Whipple's theorems obtained earlier by Lavoie, Grondin and Rathie, and Lavoie, Grondin, Rathie and Arora follow special cases of our main findings.

  • PDF

ANOTHER GENERALIZATION OF A RAMANUJAN SUMMATION

  • Lee, Seung Woo;Lee, Chang Hyun;Kim, Yong Sup
    • Honam Mathematical Journal
    • /
    • v.35 no.1
    • /
    • pp.83-92
    • /
    • 2013
  • The aim of this research paper is to provide certain generalizations of two well-known summations due to Ramanujan. The results are derived with the help of the generalized Dixon's theorem on the sum of $_3F_2$ and the generalized Kummer's theorem for $_2F_1$ obtained earlier by Lavoie et al. [3, 5]. As their special cases, we have obtained fifteen interesting summations which are closely related to Ramanujan's summation.

ON PREECE'S IDENTITY AND OTHER CONTIGUOUS RESULTS

  • CHOI, JUNE-SANG;RATHIE ARJUN K.;BHOJAK BHARTI
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.1
    • /
    • pp.169-178
    • /
    • 2005
  • Five results closely related to the well-known Preece's identity obtained earlier by Choi and Rathie will be derived here by using some known hypergeometric identities. In addition to this, the identities obtained earlier by Choi and Rathie have also been written in a compact form.

ANOTHER METHOD FOR PADMANABHAM'S TRANSFORMATION FORMULA FOR EXTON'S TRIPLE HYPERGEOMETRIC SERIES X8

  • Kim, Yong-Sup;Rathie, Arjun Kumar;Choi, June-Sang
    • Communications of the Korean Mathematical Society
    • /
    • v.24 no.4
    • /
    • pp.517-521
    • /
    • 2009
  • The object of this note is to derive Padmanabham's transformation formula for Exton's triple hypergeometric series $X_8$ by using a different method from that of Padmanabham's. An interesting special case is also pointed out.