• Title/Summary/Keyword: Division Algorithm

Search Result 3,066, Processing Time 0.036 seconds

Study on Improving the Navigational Safety Evaluation Methodology based on Autonomous Operation Technology (자율운항기술 기반의 선박 통항 안전성 평가 방법론 개선 연구)

  • Jun-Mo Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.1
    • /
    • pp.74-81
    • /
    • 2024
  • In the near future, autonomous ships, ships controlled by shore remote control centers, and ships operated by navigators will coexist and operate the sea together. In the advent of this situation, a method is required to evaluate the safety of the maritime traffic environment. Therefore, in this study, a plan to evaluate the safety of navigation through ship control simulation was proposed in a maritime environment, where ships directly controlled by navigators and autonomous ships coexisted, using autonomous operation technology. Own ship was designed to have autonomous operational functions by learning the MMG model based on the six-DOF motion with the PPO algorithm, an in-depth reinforcement learning technique. The target ship constructed maritime traffic modeling data based on the maritime traffic data of the sea area to be evaluated and designed autonomous operational functions to be implemented in a simulation space. A numerical model was established by collecting date on tide, wave, current, and wind from the maritime meteorological database. A maritime meteorology model was created based on this and designed to reproduce maritime meteorology on the simulator. Finally, the safety evaluation proposed a system that enabled the risk of collision through vessel traffic flow simulation in ship control simulation while maintaining the existing evaluation method.

Evaluation of Hazardous Zones by Evacuation Scenario under Disasters on Training Ships (실습선 재난 시 피난 시나리오 별 위험구역 평가)

  • SangJin Lim;YoonHo Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.2
    • /
    • pp.200-208
    • /
    • 2024
  • The occurrence a fire on a training ship with a large number of people on board can lead to severe casualties. Hence the Seafarers' Act and Safety Life At Sea(SOLAS) emphasizes the importance of the abandon ship drill. Therefore, in this study, the training ship of Mokpo National Maritime University, Segero, which has a large number of people on board, was selected as the target ship and the likelihood and severity of fire accidents on each deck were predicted through the preliminary hazard analysis(PHA) qualitative risk assessment. Additionally, assuming a fire in a high-risk area, a simulation of evacuation time and population density was performed to quantitatively predict the risk. The the total evacuation time was predicted to be the longest at 501s in the meal time scenario, in which the population distribution was concentrated in one area. Depending on the scenario, some decks had relatively high population densities of over 1.4pers/m2, preventing stagnation in the number of evacuees. The results of this study are expected to be used as basic data to develop training scenarios for training ships by quantifying evacuation time and population density according to various evacuation scenarios, and the research can be expanded in the future through comparison of mathematical models and experimental values.

Corporate Credit Rating based on Bankruptcy Probability Using AdaBoost Algorithm-based Support Vector Machine (AdaBoost 알고리즘기반 SVM을 이용한 부실 확률분포 기반의 기업신용평가)

  • Shin, Taek-Soo;Hong, Tae-Ho
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.3
    • /
    • pp.25-41
    • /
    • 2011
  • Recently, support vector machines (SVMs) are being recognized as competitive tools as compared with other data mining techniques for solving pattern recognition or classification decision problems. Furthermore, many researches, in particular, have proved them more powerful than traditional artificial neural networks (ANNs) (Amendolia et al., 2003; Huang et al., 2004, Huang et al., 2005; Tay and Cao, 2001; Min and Lee, 2005; Shin et al., 2005; Kim, 2003).The classification decision, such as a binary or multi-class decision problem, used by any classifier, i.e. data mining techniques is so cost-sensitive particularly in financial classification problems such as the credit ratings that if the credit ratings are misclassified, a terrible economic loss for investors or financial decision makers may happen. Therefore, it is necessary to convert the outputs of the classifier into wellcalibrated posterior probabilities-based multiclass credit ratings according to the bankruptcy probabilities. However, SVMs basically do not provide such probabilities. So it required to use any method to create the probabilities (Platt, 1999; Drish, 2001). This paper applied AdaBoost algorithm-based support vector machines (SVMs) into a bankruptcy prediction as a binary classification problem for the IT companies in Korea and then performed the multi-class credit ratings of the companies by making a normal distribution shape of posterior bankruptcy probabilities from the loss functions extracted from the SVMs. Our proposed approach also showed that their methods can minimize the misclassification problems by adjusting the credit grade interval ranges on condition that each credit grade for credit loan borrowers has its own credit risk, i.e. bankruptcy probability.

Comparison of Forest Carbon Stocks Estimation Methods Using Forest Type Map and Landsat TM Satellite Imagery (임상도와 Landsat TM 위성영상을 이용한 산림탄소저장량 추정 방법 비교 연구)

  • Kim, Kyoung-Min;Lee, Jung-Bin;Jung, Jaehoon
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.5
    • /
    • pp.449-459
    • /
    • 2015
  • The conventional National Forest Inventory(NFI)-based forest carbon stock estimation method is suitable for national-scale estimation, but is not for regional-scale estimation due to the lack of NFI plots. In this study, for the purpose of regional-scale carbon stock estimation, we created grid-based forest carbon stock maps using spatial ancillary data and two types of up-scaling methods. Chungnam province was chosen to represent the study area and for which the $5^{th}$ NFI (2006~2009) data was collected. The first method (method 1) selects forest type map as ancillary data and uses regression model for forest carbon stock estimation, whereas the second method (method 2) uses satellite imagery and k-Nearest Neighbor(k-NN) algorithm. Additionally, in order to consider uncertainty effects, the final AGB carbon stock maps were generated by performing 200 iterative processes with Monte Carlo simulation. As a result, compared to the NFI-based estimation(21,136,911 tonC), the total carbon stock was over-estimated by method 1(22,948,151 tonC), but was under-estimated by method 2(19,750,315 tonC). In the paired T-test with 186 independent data, the average carbon stock estimation by the NFI-based method was statistically different from method2(p<0.01), but was not different from method1(p>0.01). In particular, by means of Monte Carlo simulation, it was found that the smoothing effect of k-NN algorithm and mis-registration error between NFI plots and satellite image can lead to large uncertainty in carbon stock estimation. Although method 1 was found suitable for carbon stock estimation of forest stands that feature heterogeneous trees in Korea, satellite-based method is still in demand to provide periodic estimates of un-investigated, large forest area. In these respects, future work will focus on spatial and temporal extent of study area and robust carbon stock estimation with various satellite images and estimation methods.

A Comprehensive Computer Program for Monitor Unit Calculation and Beam Data Management: Independent Verification of Radiation Treatment Planning Systems (방사선치료계획시스템의 독립적 검증을 위한 선량 계산 및 빔데이터 관리 프로그램)

  • Kim, Hee-Jung;Park, Yang-Kyun;Park, Jong-Min;Choi, Chang-Heon;Kim, Jung-In;Lee, Sang-Won;Oh, Heon-Jin;Lim, Chun-Il;Kim, Il-Han;Ye, Sung-Joon
    • Progress in Medical Physics
    • /
    • v.19 no.4
    • /
    • pp.231-240
    • /
    • 2008
  • We developed a user-friendly program to independently verify monitor units (MUs) calculated by radiation treatment planning systems (RTPS), as well as to manage beam database in clinic. The off-axis factor, beam hardening effect, inhomogeneity correction, and the different depth correction were incorporated into the program algorithm to improve the accuracy in calculated MUs. A beam database in the program was supposed to use measured data from routine quality assurance (QA) processes for timely update. To enhance user's convenience, a graphic user interface (GUI) was developed by using Visual Basic for Application. In order to evaluate the accuracy of the program for various treatment conditions, the MU comparisons were made for 213 cases of phantom and for 108 cases of 17 patients treated by 3D conformal radiation therapy. The MUs calculated by the program and calculated by the RTPS showed a fair agreement within ${\pm}3%$ for the phantom and ${\pm}5%$ for the patient, except for the cases of extreme inhomogeneity. By using Visual Basic for Application and Microsoft Excel worksheet interface, the program can automatically generate beam data book for clinical reference and the comparison template for the beam data management. The program developed in this study can be used to verify the accuracy of RTPS for various treatment conditions and thus can be used as a tool of routine RTPS QA, as well as independent MU checks. In addition, its beam database management interface can update beam data periodically and thus can be used to monitor multiple beam databases efficiently.

  • PDF

The Evaluation of Meteorological Inputs retrieved from MODIS for Estimation of Gross Primary Productivity in the US Corn Belt Region (MODIS 위성 영상 기반의 일차생산성 알고리즘 입력 기상 자료의 신뢰도 평가: 미국 Corn Belt 지역을 중심으로)

  • Lee, Ji-Hye;Kang, Sin-Kyu;Jang, Keun-Chang;Ko, Jong-Han;Hong, Suk-Young
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.4
    • /
    • pp.481-494
    • /
    • 2011
  • Investigation of the $CO_2$ exchange between biosphere and atmosphere at regional, continental, and global scales can be directed to combining remote sensing with carbon cycle process to estimate vegetation productivity. NASA Earth Observing System (EOS) currently produces a regular global estimate of gross primary productivity (GPP) and annual net primary productivity (NPP) of the entire terrestrial earth surface at 1 km spatial resolution. While the MODIS GPP algorithm uses meteorological data provided by the NASA Data Assimilation Office (DAO), the sub-pixel heterogeneity or complex terrain are generally reflected due to coarse spatial resolutions of the DAO data (a resolution of $1{\circ}\;{\times}\;1.25{\circ}$). In this study, we estimated inputs retrieved from MODIS products of the AQUA and TERRA satellites with 5 km spatial resolution for the purpose of finer GPP and/or NPP determinations. The derivatives included temperature, VPD, and solar radiation. Seven AmeriFlux data located in the Corn Belt region were obtained to use for evaluation of the input data from MODIS. MODIS-derived air temperature values showed a good agreement with ground-based observations. The mean error (ME) and coefficient of correlation (R) ranged from $-0.9^{\circ}C$ to $+5.2^{\circ}C$ and from 0.83 to 0.98, respectively. VPD somewhat coarsely agreed with tower observations (ME = -183.8 Pa ~ +382.1 Pa; R = 0.51 ~ 0.92). While MODIS-derived shortwave radiation showed a good correlation with observations, it was slightly overestimated (ME = -0.4 MJ $day^{-1}$ ~ +7.9 MJ $day^{-1}$; R = 0.67 ~ 0.97). Our results indicate that the use of inputs derived MODIS atmosphere and land products can provide a useful tool for estimating crop GPP.

Development of JPEG2000 Viewer for Mobile Image System (이동형 의료영상 장치를 위한 JPEG2000 영상 뷰어 개발)

  • 김새롬;정해조;강원석;이재훈;이상호;신성범;유선국;김희중
    • Progress in Medical Physics
    • /
    • v.14 no.2
    • /
    • pp.124-130
    • /
    • 2003
  • Currently, as a consequence of PACS (Picture Archiving Communication System) implementation many hospitals are replacing conventional film-type interpretations of diagnostic medical images with new digital-format interpretations that can also be saved, and retrieve However, the big limitation in PACS is considered to be the lack of mobility. The purpose of this study is to determine the optimal communication packet size. This was done by considering the terms occurred in the wireless communication. After encoding medical image using JPGE2000 image compression method, This method embodied auto-error correction technique preventing the loss of packets occurred during wireless communication. A PC class server, with capabilities to load, collect data, save images, and connect with other network, was installed. Image data were compressed using JPEG2000 algorithm which supports the capability of high energy density and compression ratio, to communicate through a wireless network. Image data were also transmitted in block units coeded by JPEG2000 to prevent the loss of the packets in a wireless network. When JPGE2000 image data were decoded in a PUA (Personal Digital Assistant), it was instantaneous for a MR (Magnetic Resonance) head image of 256${\times}$256 pixels, while it took approximately 5 seconds to decode a CR (Computed Radiography) chest image of 800${\times}$790 pixels. In the transmission of the image data using a CDMA 1X module (Code-Division Multiple Access 1st Generation), 256 byte/sec was considered a stable transmission rate, but packets were lost in the intervals at the transmission rate of 1Kbyte/sec. However, even with a transmission rate above 1 Kbyte/sec, packets were not lost in wireless LAN. Current PACS are not compatible with wireless networks. because it does not have an interface between wired and wireless. Thus, the mobile JPEG2000 image viewing system was developed in order to complement mobility-a limitation in PACS. Moreover, the weak-connections of the wireless network was enhanced by re-transmitting image data within a limitations The results of this study are expected to play an interface role between the current wired-networks PACS and the mobile devices.

  • PDF

Improvement of Radar Rainfall Estimation Using Radar Reflectivity Data from the Hybrid Lowest Elevation Angles (혼합 최저고도각 반사도 자료를 이용한 레이더 강우추정 정확도 향상)

  • Lyu, Geunsu;Jung, Sung-Hwa;Nam, Kyung-Yeub;Kwon, Soohyun;Lee, Cheong-Ryong;Lee, Gyuwon
    • Journal of the Korean earth science society
    • /
    • v.36 no.1
    • /
    • pp.109-124
    • /
    • 2015
  • A novel approach, hybrid surface rainfall (KNU-HSR) technique developed by Kyungpook Natinal University, was utilized for improving the radar rainfall estimation. The KNU-HSR technique estimates radar rainfall at a 2D hybrid surface consistings of the lowest radar bins that is immune to ground clutter contaminations and significant beam blockage. Two HSR techniques, static and dynamic HSRs, were compared and evaluated in this study. Static HSR technique utilizes beam blockage map and ground clutter map to yield the hybrid surface whereas dynamic HSR technique additionally applies quality index map that are derived from the fuzzy logic algorithm for a quality control in real time. The performances of two HSRs were evaluated by correlation coefficient (CORR), total ratio (RATIO), mean bias (BIAS), normalized standard deviation (NSD), and mean relative error (MRE) for ten rain cases. Dynamic HSR (CORR=0.88, BIAS= $-0.24mm\;hr^{-1}$, NSD=0.41, MRE=37.6%) shows better performances than static HSR without correction of reflectivity calibration bias (CORR=0.87, BIAS= $-2.94mm\;hr^{-1}$, NSD=0.76, MRE=58.4%) for all skill scores. Dynamic HSR technique overestimates surface rainfall at near range whereas it underestimates rainfall at far ranges due to the effects of beam broadening and increasing the radar beam height. In terms of NSD and MRE, dynamic HSR shows the best results regardless of the distance from radar. Static HSR significantly overestimates a surface rainfall at weaker rainfall intensity. However, RATIO of dynamic HSR remains almost 1.0 for all ranges of rainfall intensity. After correcting system bias of reflectivity, NSD and MRE of dynamic HSR are improved by about 20 and 15%, respectively.

Reproducibility of Regional Pulse Wave Velocity in Healthy Subjects

  • Im Jae-Joong;Lee, Nak-Bum;Rhee Moo-Yong;Na Sang-Hun;Kim, Young-Kwon;Lee, Myoung-Mook;Cockcroft John R.
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.4 no.2
    • /
    • pp.19-24
    • /
    • 2006
  • Background: Pulse wave velocity (PWV), which is inversely related to the distensibility of an arterial wall, offers a simple and potentially useful approach for an evaluation of cardiovascular diseases. In spite of the clinical importance and widespread use of PWV, there exist no standard either for pulse sensors or for system requirements for accurate pulse wave measurement. Objective of this study was to assess the reproducibility of PWV values using a newly developed PWV measurement system in healthy subjects prior to a large-scale clinical study. Methods: System used for the study was the PP-1000 (Hanbyul Meditech Co., Korea), which provides regional PWV values based on the measurements of electrocardiography (ECG), phonocardiography (PCG), and pulse waves from four different sites of arteries (carotid, femoral, radial, and dorsalis pedis) simultaneously. Seventeen healthy male subjects with a mean age of 33 years (ranges 22 to 52 years) without any cardiovascular disease were participated for the experiment. Two observers (observer A and B) performed two consecutive measurements from the same subject in a random order. For an evaluation of system reproducibility, two analyses (within-observer and between-observer) were performed, and expressed in terms of mean difference ${\pm}2SD$, as described by Bland and Altman plots. Results: Mean and SD of PWVs for aorta, arm, and leg were $7.07{\pm}1.48m/sec,\;8.43{\pm}1.14m/sec,\;and\;8.09{\pm}0.98m/sec$ measured from observer A and $6.76{\pm}1.00m/sec,\;7.97{\pm}0.80m/sec,\;and\;\7.97{\pm}0.72m/sec$ from observer B, respectively. Between-observer differences ($mean{\pm}2SD$) for aorta, arm, and leg were $0.14{\pm\}0.62m/sec,\;0.18{\pm\}0.84m/sec,\;and\;0.07{\pm}0.86m/sec$, and the correlation coefficients were high especially 0.93 for aortic PWV. Within-observer differences ($mean{\pm}2SD$) for aorta, arm, and leg were $0.01{\pm}0.26m/sec,\;0.02{\pm}0.26m/sec,\;and\;0.08{\pm}0.32m/sec$ from observer A and $0.01{\pm}0.24m/sec,\;0.04{\pm}0.28m/sec,\;and\;0.01{\pm}0.20m/sec$ from observer B, respectively. All the measurements showed significantly high correlation coefficients ranges from 0.94 to 0.99. Conclusion: PWV measurement system used for the study offers comfortable and simple operation and provides accurate analysis results with high reproducibility. Since the reproducibility of the measurement is critical for the diagnosis in clinical use, it is necessary to provide an accurate algorithm for the detection of additional features such as flow wave, reflection wave, and dicrotic notch from a pulse waveform. This study will be extended for the comparison of PWV values from patients with various vascular risks for clinical application. Data acquired from the study could be used for the determination of the appropriate sample size for further studies relating various types of arteriosclerosis-related vascular disease.

  • PDF

Red Tide Detection through Image Fusion of GOCI and Landsat OLI (GOCI와 Landsat OLI 영상 융합을 통한 적조 탐지)

  • Shin, Jisun;Kim, Keunyong;Min, Jee-Eun;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_2
    • /
    • pp.377-391
    • /
    • 2018
  • In order to efficiently monitor red tide over a wide range, the need for red tide detection using remote sensing is increasing. However, the previous studies focus on the development of red tide detection algorithm for ocean colour sensor. In this study, we propose the use of multi-sensor to improve the inaccuracy for red tide detection and remote sensing data in coastal areas with high turbidity, which are pointed out as limitations of satellite-based red tide monitoring. The study area were selected based on the red tide information provided by National Institute of Fisheries Science, and spatial fusion and spectral-based fusion were attempted using GOCI image as ocean colour sensor and Landsat OLI image as terrestrial sensor. Through spatial fusion of the two images, both the red tide of the coastal area and the outer sea areas, where the quality of Landsat OLI image was low, which were impossible to observe in GOCI images, showed improved detection results. As a result of spectral-based fusion performed by feature-level and rawdata-level, there was no significant difference in red tide distribution patterns derived from the two methods. However, in the feature-level method, the red tide area tends to overestimated as spatial resolution of the image low. As a result of pixel segmentation by linear spectral unmixing method, the difference in the red tide area was found to increase as the number of pixels with low red tide ratio increased. For rawdata-level, Gram-Schmidt sharpening method estimated a somewhat larger area than PC spectral sharpening method, but no significant difference was observed. In this study, it is shown that coastal red tide with high turbidity as well as outer sea areas can be detected through spatial fusion of ocean colour and terrestrial sensor. Also, by presenting various spectral-based fusion methods, more accurate red tide area estimation method is suggested. It is expected that this result will provide more precise detection of red tide around the Korean peninsula and accurate red tide area information needed to determine countermeasure to effectively control red tide.