• Title/Summary/Keyword: Divisible modules

Search Result 7, Processing Time 0.025 seconds

w-MATLIS COTORSION MODULES AND w-MATLIS DOMAINS

  • Pu, Yongyan;Tang, Gaohua;Wang, Fanggui
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1187-1198
    • /
    • 2019
  • Let R be a domain with its field Q of quotients. An R-module M is said to be weak w-projective if $Ext^1_R(M,N)=0$ for all $N{\in}{\mathcal{P}}^{\dagger}_w$, where ${\mathcal{P}}^{\dagger}_w$ denotes the class of GV-torsionfree R-modules N with the property that $Ext^k_R(M,N)=0$ for all w-projective R-modules M and for all integers $k{\geq}1$. In this paper, we define a domain R to be w-Matlis if the weak w-projective dimension of the R-module Q is ${\leq}1$. To characterize w-Matlis domains, we introduce the concept of w-Matlis cotorsion modules and study some basic properties of w-Matlis modules. Using these concepts, we show that R is a w-Matlis domain if and only if $Ext^k_R(Q,D)=0$ for any ${\mathcal{P}}^{\dagger}_w$-divisible R-module D and any integer $k{\geq}1$, if and only if every ${\mathcal{P}}^{\dagger}_w$-divisible module is w-Matlis cotorsion, if and only if w.w-pdRQ/$R{\leq}1$.

CHARACTERIZING ALMOST PERFECT RINGS BY COVERS AND ENVELOPES

  • Fuchs, Laszlo
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.1
    • /
    • pp.131-144
    • /
    • 2020
  • Characterizations of almost perfect domains by certain covers and envelopes, due to Bazzoni-Salce [7] and Bazzoni [4], are generalized to almost perfect commutative rings (with zero-divisors). These rings were introduced recently by Fuchs-Salce [14], showing that the new rings share numerous properties of the domain case. In this note, it is proved that admitting strongly flat covers characterizes the almost perfect rings within the class of commutative rings (Theorem 3.7). Also, the existence of projective dimension 1 covers characterizes the same class of rings within the class of commutative rings admitting the cotorsion pair (𝒫1, 𝒟) (Theorem 4.1). Similar characterization is proved concerning the existence of divisible envelopes for h-local rings in the same class (Theorem 5.3). In addition, Bazzoni's characterization via direct sums of weak-injective modules [4] is extended to all commutative rings (Theorem 6.4). Several ideas of the proofs known for integral domains are adapted to rings with zero-divisors.

ON 𝜙-EXACT SEQUENCES AND 𝜙-PROJECTIVE MODULES

  • Zhao, Wei
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.6
    • /
    • pp.1513-1528
    • /
    • 2021
  • Let R be a commutative ring with prime nilradical Nil(R) and M an R-module. Define the map 𝜙 : R → RNil(R) by ${\phi}(r)=\frac{r}{1}$ for r ∈ R and 𝜓 : M → MNil(R) by ${\psi}(x)=\frac{x}{1}$ for x ∈ M. Then 𝜓(M) is a 𝜙(R)-module. An R-module P is said to be 𝜙-projective if 𝜓(P) is projective as a 𝜙(R)-module. In this paper, 𝜙-exact sequences and 𝜙-projective R-modules are introduced and the rings over which all R-modules are 𝜙-projective are investigated.

CATENARY MODULES II

  • NAMAZI, S.;SHARIF, H.
    • Honam Mathematical Journal
    • /
    • v.22 no.1
    • /
    • pp.9-16
    • /
    • 2000
  • An A-module M is catenary if for each pair of prime submodules K and L of M with $K{\subset}L$ all saturated chains of prime submodules of M from K to L have a common finite length. We show that when A is a Noetherian domain, then every finitely generated A-module is catenary if and only if A is a Dedekind domain or a field. Moreover, a torsion-free divisible A-module M is catenary if and only if the vector space M over Q(A) (the field of fractions of A) is finite dimensional.

  • PDF

ON GRAPHS ASSOCIATED WITH MODULES OVER COMMUTATIVE RINGS

  • Pirzada, Shariefuddin;Raja, Rameez
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.5
    • /
    • pp.1167-1182
    • /
    • 2016
  • Let M be an R-module, where R is a commutative ring with identity 1 and let G(V,E) be a graph. In this paper, we study the graphs associated with modules over commutative rings. We associate three simple graphs $ann_f({\Gamma}(M_R))$, $ann_s({\Gamma}(M_R))$ and $ann_t({\Gamma}(M_R))$ to M called full annihilating, semi-annihilating and star-annihilating graph. When M is finite over R, we investigate metric dimensions in $ann_f({\Gamma}(M_R))$, $ann_s({\Gamma}(M_R))$ and $ann_t({\Gamma}(M_R))$. We show that M over R is finite if and only if the metric dimension of the graph $ann_f({\Gamma}(M_R))$ is finite. We further show that the graphs $ann_f({\Gamma}(M_R))$, $ann_s({\Gamma}(M_R))$ and $ann_t({\Gamma}(M_R))$ are empty if and only if M is a prime-multiplication-like R-module. We investigate the case when M is a free R-module, where R is an integral domain and show that the graphs $ann_f({\Gamma}(M_R))$, $ann_s({\Gamma}(M_R))$ and $ann_t({\Gamma}(M_R))$ are empty if and only if $$M{\sim_=}R$$. Finally, we characterize all the non-simple weakly virtually divisible modules M for which Ann(M) is a prime ideal and Soc(M) = 0.