• Title/Summary/Keyword: Diversity methods

Search Result 1,300, Processing Time 0.026 seconds

Genetic diversity of Saudi native chicken breeds segregating for naked neck and frizzle genes using microsatellite markers

  • Fathi, Moataz;El-Zarei, Mohamed;Al-Homidan, Ibrahim;Abou-Emera, Osama
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.12
    • /
    • pp.1871-1880
    • /
    • 2018
  • Objective: Recently, there has been an increasing interest in conservation of native genetic resources of chicken on a worldwide basis. Most of the native chicken breeds are threatened by extinction or crossing with ecotypes. Methods: Six Saudi native chicken breeds including black naked neck, brown frizzled, black, black barred, brown and gray were used in the current study. The aim of the current study was to evaluate genetic diversity, relationship and population structure of Saudi native chicken breeds based on 20 microsatellite markers. Results: A total of 172 alleles were detected in Saudi native chicken breeds across all 20 microsatellite loci. The mean number of alleles per breed ranged from 4.35 in gray breed to 5.45 in normally feathered black with an average of 8.6 alleles. All breeds were characterized by a high degree of genetic diversity, with the lowest heterozygosity found in the brown breed (72%) and the greatest in the frizzled and black barred populations (78%). Higher estimate of expected heterozygosity (0.68) was found in both black breeds (normal and naked neck) compared to the other chicken populations. All studied breeds showed no inbreeding within breed (negative inbreeding coefficient [$F_{IS}$]). The phylogenetic relationships of chickens were examined using neighbor-joining trees constructed at the level of breeds and individual samples. The neighbor-joining tree constructed at breed level revealed three main clusters, with naked neck and gray breeds in one cluster, and brown and frizzled in the second cluster leaving black barred in a separate one. Conclusion: It could be concluded that the genetic information derived from the current study can be used as a guide for genetic improvement and conservation in further breeding programs. Our findings indicate that the Saudi native chicken populations have a rich genetic diversity and show a high polymorphism.

Genetic characterization and population structure of six brown layer pure lines using microsatellite markers

  • Karsli, Taki;Balcioglu, Murat Soner
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.1
    • /
    • pp.49-57
    • /
    • 2019
  • Objective: The first stage in both breeding and programs for the conservation of genetic resources are the identification of genetic diversity in the relevant population. The aim of the present study is to identify genetic diversity of six brown layer pure chicken lines (Rhode Island Red [RIRI, RIRII], Barred Rock [BARI, BARII], Columbian Rock [COL], and line 54 [L-54]) with microsatellite markers. Furthermore, the study aims to employ its findings to discuss the possibilities for the conservation and sustainable use of these lines that have been bred as closed populations for a long time. Methods: In the present study, a total number of 180 samples belonging to RIRI (n = 30), RIRII (n = 30), BARI (n = 30), BARII (n = 30), L-54 (n = 30), and COL (n = 30) lines were genotyped using 22 microsatellite loci. Microsatellite markers are extremely useful tools in the identification of genetic diversity since they are distributed throughout the eukaryotic genome in multitudes, demonstrate co-dominant inheritance and they feature a high rate of polymorphism and repeatability. Results: In this study, we found all loci to be polymorphic and identified the average number of alleles per locus to be in the range between 4.41 (BARI) and 5.45 (RIRI); the observed heterozygosity to be in the range between 0.31 (RIRII) and 0.50 (BARII); and $F_{IS}$ (inbreeding coefficient) values in the range between 0.16 (L-54) and 0.46 (RIRII). The $F_{IS}$ values obtained in this context points out to a deviation from Hardy-Weinberg equilibrium due to heterozygote deficiency in six different populations. The Neighbour-Joining tree, Factorial Correspondence Analysis and STRUCTURE clustering analyzes showed that six brown layer lines were separated according to their genetic origins. Conclusion: The results obtained from the study indicate a medium level of genetic diversity, high level inbreeding in chicken lines and high level genetic differentiation between chicken lines.

Genetic diversity analysis of fourteen geese breeds based on microsatellite genotyping technique

  • Moniem, Hebatallah Abdel;Zong, Yang Yao;Abdallah, Alwasella;Chen, Guo-hong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.11
    • /
    • pp.1664-1672
    • /
    • 2019
  • Objective: This study aimed to measure genetic diversity and to determine the relationships among fourteen goose breeds. Methods: Microsatellite markers were isolated from the genomic DNA of geese based on previous literature. The DNA segments, including short tandem repeats, were tested for their diversity among fourteen populations of geese. The diversity was tested on both breeds and loci level and by mean of unweighted pair group method with arithmetic mean and structure program, phylogenetic tree and population structure were tested. Results: A total of 108 distinct alleles (1%) were observed across the fourteen breeds, with 36 out of the 108 alleles (33.2%) being unique to only one breed. Genetic parameters were measured per the 14 breeds and the 9 loci. Medium to high heterozygosity was reported with high effective numbers of alleles (Ne). Polymorphic information contents (PIC) of the screened loci was found to be highly polymorphic for eleven breeds; while 3 breeds were reported moderately polymorphic. Breeding coefficient ($F_{IS}$) ranged from -0.033 to 0.358, and the pair wise genetic differentiation ($F_{ST}$) ranged from 0.01 to 0.36 across the fourteen breeds; for the 9 loci observed and expected heterozygosity, and Ne were same as the breeds parameters, PIC of the screened loci reported 6 loci highly polymorphic and 3 loci to be medium polymorphic, and $F_{IS}$ ranged from -0.113 to 0.368. In addition, genetic distance estimate revealed a close genetic distance between Canada goose and Hortobagy goose breeds by 0.04, and the highest distance was between Taihu goose and Graylag goose (anser anser) breed by 0.54. Conclusion: Cluster analyses were made, and they revealed that goose breeds had hybridized frequently, resulting in a loss of genetic distinctiveness for some breeds.

Nationally-Funded R&D Projects Data Based Dynamic Convergence Index Development: Focused On Life Science & Public Health Area (국가 연구개발(R&D) 과제 데이터 기반 동적 융합지표에 관한 연구: 생명·보건의료 분야를 중심으로)

  • Lee, Doyeon;Kim, Keunhwan
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.2_2
    • /
    • pp.219-232
    • /
    • 2022
  • The aim of this study is to provide the dynamic convergence index that reflected the inherent characteristics of the convergence phenomenon and utilized the nationally-funded R&D projects data, thereby suggesting useful information about the direction of the national convergence R&D strategy. The dynamic convergence index that we suggested was made of two indicators: persistency and diversity. From a time-series perspective, the persistency index, which measures the degree of continuous convergence of multidisciplinary nationally-funded R&D projects, and the diversity index, which measures the degree of binding with heterogeneous research areas. We conducted the empirical experiment with 151,248 convergence R&D projects during the 2015~2021 time period. The results showed that convergence R&D projects in both public health and life sciences appeared the highest degree of persistency. It was presumed that the degree of persistency has increased again due to the COVID-19 pandemic. Meanwhile, the degree of diversity has risen with combining with disciplinary such as materials, chemical engineering, and brain science areas to solve social problems including mental health, depression, and aging. This study not only provides implications for improving the concept and definition of dynamic convergence in terms of persistency and diversity for national convergence R&D strategy but also presented dynamic convergence index and analysis methods that can be practically applied for directing public R&D programs.

Genetic diversity and population structure of Mongolian regional horses with 14 microsatellite markers

  • Yun, Jihye;Oyungerel, Baatartsogt;Kong, Hong Sik
    • Animal Bioscience
    • /
    • v.35 no.8
    • /
    • pp.1121-1128
    • /
    • 2022
  • Objective: This study aimed to identify the genetic diversity and population structure of Mongolian horse populations according to the province of residence (Khentii, KTP; Uvs, USP; Omnogovi and Dundgovi, GOP; Khovsgol, KGP) using 14 microsatellite (MS) markers. Methods: A total of 269 whole blood samples were obtained from the four populations (KTP, USP, GOP, KGP) geographically distinct provinces. Multiplex polymerase chain reaction (PCR) was conducted using 14 MS markers (AHT4, ASB2, ASB17, ASB23, CA425, HMS1, HMS2, HMS3, HMS6, HMS7, HTG4, HTG6, HTG7, and VHL20), as recommended by the International Society for Animal Genetics. Capillary electrophoresis was conducted using the amplified PCR products, alleles were determined. Alleles were used for statistical analysis of genetic variability, Nei's DA genetic distance, principal coordinate analysis (PCoA), factorial corresponding analysis (FCA), and population structure. Results: On average, the number of alleles, expected heterozygosity (HExp), observed heterozygosity (HObs), and polymorphic information content among all populations were 11.43, 0.772, 0.757, and 0.737, respectively. In the PCoA and FCA, GOP, and KGP were genetically distinct from other populations, and the KTP and USP showed a close relationship. The two clusters identified using Nei's DA genetic distance analysis and population structure highlighted the presence of structurally clear genetic separation. Conclusion: Overall, the results of this study suggest that genetic diversity between KTP and USP was low, and that between GOP and KGP was high. It is thought that these results will help in the effective preservation and improvement of Mongolian horses through genetic diversity analysis and phylogenetic relationships.

Characterization analysis of Rongchang pig population based on the Zhongxin-1 Porcine Breeding Array PLUS

  • Dong Leng;Liangpeng Ge;Jing Sun
    • Animal Bioscience
    • /
    • v.36 no.10
    • /
    • pp.1508-1516
    • /
    • 2023
  • Objective: To carry out a comprehensive production planning of the existing Rongchang pig population from both environmental and genetic aspects, and to establish a closed population with stable genetic diversity and strict pathogen control, it is necessary to fully understand the genetic background of the population. Methods: We genotyped 54 specific pathogen free (SPF) Rongchang pigs using the Zhongxin-1 Porcine Breeding Array PLUS, calculated their genetic diversity parameters and constructed their families. In addition, we also counted the runs of homozygosity (ROH) of each individual and calculated the value of inbreeding coefficient based on ROH for each individual. Results: Firstly, the results of genetic diversity analysis showed that the effective population size (Ne) of this population was 3.2, proportion of polymorphic markers (PN) was 0.515, desired heterozygosity (He) and observed heterozygosity (Ho) were 0.315 and 0.335. Ho was higher than He, indicating that the heterozygosity of all the selected loci was high. Secondly, combining the results of genomic relatedness analysis and cluster analysis, it was found that the existing Rongchang pig population could be divided into four families. Finally, we also counted the ROH of each individual and calculated the inbreeding coefficient value accordingly, whose mean value was 0.09. Conclusion: Due to the limitation of population size and other factors, the genetic diversity of this Rongchang pig population is low. The results of this study can provide basic data to support the development of Rongchang pig breeding program, the establishment of SPF Rongchang pig closed herd and its experimental utilization.

Teaching mathematics for equity: An analysis of the effect of diversity-inclusive instruction and the mediating effect of teacher-student relationship on the mathematics achievement of Korean students with a low economic status (교육평등을 위한 수학 교수법: 저소득층 학생의 수학성취도에 대한 다양성 수용 수업의 효과와 교사-학생 관계의 매개효과 분석)

  • Seung-A Cho;Mi-Kyung Ju
    • Journal of the Korean School Mathematics Society
    • /
    • v.26 no.2
    • /
    • pp.71-86
    • /
    • 2023
  • In this paper, we sought for instructional methods to guarantee equitable access to successful mathematics learning for students with a low economic status. For the purpose, we analyzed the PISA2012 data to investigate the effect of diversity-inclusive instruction and teacher-student relationship on mathematics achievement of Korean students with a low economic status. The analysis showed that there was a positive correlation between diversity-inclusive instruction and the mathematics achievement of the students. In addition, it indicated a partial mediating effect of teacher-student relationship between diversity-inclusive instruction and the mathematics achievement of the students. Further analysis is necessary to examine the effect of diversity-inclusive instruction on the achievement of students from deprived backgrounds. Based on the results, we discuss the implications for the improvement of mathematics instruction to guarantee educational equity for all students.

Food and dish group diversity on menus of daycare centers provided by Center for Children's Foodservice Management in Korea: a descriptive study (어린이급식관리지원센터에서 제공하는 어린이집 식단의 식품군 및 음식군 다양성에 관한 기술연구)

  • Youn-Rok Kang;Kyeong-Sook Lim;Hyung-Sook Kim
    • Korean Journal of Community Nutrition
    • /
    • v.28 no.6
    • /
    • pp.449-465
    • /
    • 2023
  • Objectives: This study aimed to analyze menu patterns and food group diversity in daycare centers managed by the Center for Children's Foodservice Management in South Korea. Methods: Data from 18 Center for Children's Foodservice Management centers across various provinces (excluding Jeju Island) were analyzed. We examined 8,796 meals served in February, May, August, and December 2021, focusing on seasonal lunch and snack menus for children aged 3-5. Foods were categorized into 19 groups for lunch and 21 for snacks. The frequency of food groups and dietary patterns were assessed using the Dietary Diversity Score. Analyses were conducted using Excel 2016 and IBM SPSS Statistics version 28. Results: Most lunch menus (89%) included five menu items, with a ratio of grain, meat, and vegetables at 88%. Snack menus typically had one item (57%), with significantly more items in the afternoon compared to the morning (P < 0.001). Regarding snack patterns, 75.2% of morning snacks and 61.1% of afternoon snacks contained only one solid food and drink (P < 0.001). Fruit and milk (22.4%) was the most prevalent pattern in morning snacks, while grain and milk (31%) dominated afternoon snacks (P < 0.001). Only 48% of daycare center menus (all snacks and lunch) included all five food groups (grain, meat, vegetables, fruit, and milk). Notably, only 83% included milk and 57% included fruit. Conclusions: These findings highlight the need to improve food variety and diversity in the Center for Children's Foodservice Management-managed daycare center menus. Developing more detailed guidelines for menu structure and food composition is crucial to ensure children receive balanced and diverse nutrition.

Population diversity, admixture, and demographic trend of the Sumba Ongole cattle based on genomic data

  • Pita Sudrajad;Hartati Hartati;Bayu Dewantoro Putro Soewandi;Saiful Anwar;Angga Ardhati Rani Hapsari;Tri Satya Mastuti Widi;Sigit Bintara;Dyah Maharani
    • Animal Bioscience
    • /
    • v.37 no.4
    • /
    • pp.591-599
    • /
    • 2024
  • Objective: Sumba Ongole (SO) cattle are valuable breed due to their important role in the development of Indonesian cattle. Despite rapid advances in molecular technology, no genomic studies on SO cattle have been conducted to date. The aim of this study is to provide genomic profile related to the population diversity, admixture, and demographic trends of SO cattle. Methods: Genomic information was gathered from 79 SO cattle using the Illumina Bovine SNP50 v3 Beadchip, and for comparative purposes, additional genotypes from 209 cattle populations worldwide were included. The expected and observed heterozygosity, inbreeding coefficient, pairwise fixation indices between-population, and Nei's genetic distance were examined. Multidimensional scaling, admixture, and treemix analyses were used to investigate the population structure. Based on linkage disequilibrium and effective population size calculations, the demographic trend was observed. Results: The findings indicated that the genetic diversity of SO cattle was similar to that of other indicine breeds. SO cattle were genetically related to indicines but not to taurines or Bali cattle. The study further confirmed the close relationship between SO, Ongole, and Nellore cattle. Additionally, a small portion of the Ongole mixture were identified dominant in the SO population at the moment. The study also discovered that SO and Bali cattle (Bos javanicus) could have been ancestors in the development of Ongole Grade cattle, which corresponds to the documented history of Ongolization. Our finding indicate that SO cattle have maintained stability and possess unique traits separate from their ancestors. Conclusion: In conclusion, the genetic diversity of the SO cattle has been conserved as a result of the growing significance of the present demographic trend. Consistent endeavors are necessary to uphold the fitness of the breed.

Genetic structure analysis of domestic companion dogs using high-density SNP chip

  • Gwang Hyeon Lee;Jae Don Oh;Hong Sik Kong
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.39 no.2
    • /
    • pp.138-144
    • /
    • 2024
  • Background: As the number of households raising companion dogs increases, the pet genetic analysis market also continues to grow. However, most studies have focused on specific purposes or native breeds. This study aimed to collect genomic data through single nucleotide polymorphism (SNP) chip analysis of companion dogs in South Korea and perform genetic diversity analysis and SNP annotation. Methods: We collected samples from 95 dogs belonging to 26 breeds, including mixed breeds, in South Korea. The SNP genotypes were obtained for each sample using an AxiomTM Canine HD Array. Quality control (QC) was performed to enhance the accuracy of the analysis. A genetic diversity analysis was performed for each SNP. Results: QC initially selected SNPs, and after excluding non-diverse ones, 621,672 SNPs were identified. Genetic diversity analysis revealed minor allele frequencies, polymorphism information content, expected heterozygosity, and observed heterozygosity values of 0.220, 0.244, 0.301, and 0.261, respectively. The SNP annotation indicated that most variations had an uncertain or minimal impact on gene function. However, approximately 16,000 non-synonymous SNPs (nsSNPs) have been found to significantly alter gene function or affect exons by changing translated amino acids. Conclusions: This study obtained data on SNP genetic diversity and functional SNPs in companion dogs raised in South Korea. The results suggest that establishing an SNP set for individual identification could enable a gene-based registration system. Furthermore, identifying and researching nsSNPs related to behavior and diseases could improve dog care and prevent abandonment.