• Title/Summary/Keyword: Diversity Decode and Forward

Search Result 58, Processing Time 0.023 seconds

Diversity-Multiplexing Tradeoff Analysis for Half-Duplex Dynamic Decode-and-Forward Relay Protocol Using Multiple Antennas at a Single Node (단일 노드에서 다중 안테나를 사용하는 HD DDF Relay 프로토콜에 대한 DMT 분석)

  • Yim, Changho;Kim, Taeyoung;Yoon, Eunchul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.5
    • /
    • pp.426-435
    • /
    • 2013
  • The diversity-multiplexing tradeoff (DMT) functions of three special half-duplex (HD) dynamic decode-and-forward (DDF) protocols with multiple antennas only at the source node, only at the destination node, and only at the relay node are analytically derived. The DMT functions of these three relay protocols are compared with one another and with those of the nonorthogonal amplify and forward (NAF) protocols.

Balanced Transmit Scheme in Decode-and-Forward Cooperative Relay Communication (Decode-and-Forward 협력 릴레이 통신에서의 Balanced 전송 기법)

  • Cho, Soo-Bum;Park, Sang-Kyu
    • Journal of Internet Computing and Services
    • /
    • v.12 no.6
    • /
    • pp.35-42
    • /
    • 2011
  • Cooperative relay communication for wireless networks has been extensively studied due to its ability to mitigate fading effectively via spatial diversity. In this paper, we propose a balanced transmit scheme in cooperative relay communication with decode-and-forward DF) scheme. The proposed scheme selects the feedback bits to obtain the maximum cooperative diversity gain. The simulation results show that the proposed scheme improves the bit error rate BER) performance as compare with a conventional scheme.

The Diversity-Multiplexing Tradeoff for Multiple-Antenna Adaptive Decode and Forward Relay Protocols Exploiting Imperfect CSIT (불완전한 채널정보를 사용하는 다중안테나 적응형 복호 후 전송 중계 프로토콜의 Diversity-Multiplexing Tradeoff 분석)

  • Yoon, Han-Sang;Yoon, Eun-Chul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.9A
    • /
    • pp.776-783
    • /
    • 2011
  • In this paper, assuming that the transmitter can exploit imperfect channel state information (CSI), the diversity-multiplexing tradeoff (DMT) functions of three adaptive decode-and-forward (DF) relay protocols, each of which uses multiple-antennas at the destination node, at the relay node, or at the source node are derived. When the imperfect CSI qualities for the source-relay link, the relay-destination link, and the source-destination link are subject to asymptotic conditions, the additional diversity gains attainable by exploiting the imperfect CSI at the transmitter for those three adaptive DF relay protocols are investigated.

Diversity-Multiplexing Tradeoff Analysis for Half-Duplex Dynamic Decode and Forward Relay MIMO Protocol Using More than Two Source Antennas (두 개 이상의 소스 안테나를 갖는 HD DDF Relay MIMO 프로토콜에 대한 DMT 분석)

  • Kim, Taeyoung;Yim, Changho;Yoon, Eunchul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.5
    • /
    • pp.436-442
    • /
    • 2013
  • The diversity-multiplexing tradeoff (DMT) function of a special half-duplex (HD) dynamic decode and forward (DDF) relay protocol with more than two antennas at the source node, two antennas at the relay node, and two antennas at the destination node is derived. This protocol is compared to a HD NAF protocol with the same number of source antennas and a HD DDF relay protocol with two antennas at the source node, more than two antennas at the relay node, and two antennas at the destination node.

Performance Analysis of Hybrid Decode-Amplify-Forward Incremental Relaying Cooperative Diversity Protocol Using SNR-Based Relay Selection

  • Tran, Trung Duy;Kong, Hyung-Yun
    • Journal of Communications and Networks
    • /
    • v.14 no.6
    • /
    • pp.703-709
    • /
    • 2012
  • In this paper, we propose a hybrid decode-amplify-forward incremental cooperative diversity protocol using SNR-based relay selection. In the proposed protocol, whenever destination unsuccessfully receives the source's signal, one of relays that exploit hybrid decode-amplify-forward technique is chosen to retransmit the signal. We derive approximate closed-form expressions of outage probability and average channel capacity. Monte-Carlo simulations are presented to verify the theoretical results and compare the performance of the proposed protocol with the direct transmission protocol and conventional incremental relaying protocols.

Maximum Diversity Achieving Decoders in MIMO Decode-and-Forward Relay Systems with Partial CSI

  • Jin, Xianglan;Kum, Eun-Ji;Lim, Dae-Woon
    • Journal of Communications and Networks
    • /
    • v.16 no.1
    • /
    • pp.26-35
    • /
    • 2014
  • We consider multiple-input multiple-output decode-and-forward relay systems in Rayleigh fading channels under the partial channel state information (CSI) that the channel statistics of the source-relay (SR) link and the instantaneous CSI of the source-destination and relay-destination links are known at the destination. In this paper, we propose a new near maximum likelihood (near-ML) decoder with two-level pairwise error probability (near-ML-2PEP) which uses the average PEP instead of the exact PEP. Then, we theoretically prove that the near-ML and near-ML-2PEP decoders achieve the maximum diversity, which is confirmed by Monte Carlo simulations. Moreover, we show that the near-ML-2PEP decoder can also achieve the maximum diversity by substituting the average PEP with the values that represent the error performance of the SR link.

Throughput-Reliability Tradeoff in Decode-and-Forward Cooperative Relay Channels: A Network Information Theory Approach

  • Li, Jun;Chen, Wen
    • Journal of Communications and Networks
    • /
    • v.11 no.5
    • /
    • pp.445-454
    • /
    • 2009
  • Cooperative transmission protocols are always designed to achieve the largest diversity gain and the network capacity simultaneously. The concept of diversity-multiplexing tradeoff (DMT) in multiple input multiple output (MIMO) systems has been extended to this field. However, DMT constrains a better understanding of the asymptotic interplay between transmission rate, outage probability (OP) and signal-to-noise ratio. Another formulation called the throughput-reliability tradeoff (TRT) was then proposed to avoid such a limitation. By this new rule, Azarian and Gamal well elucidated the asymptotic trends exhibited by the OP curves in block-fading MIMO channels. Meanwhile they doubted whether the new rule can be used in more general channels and protocols. In this paper, we will prove that it does hold true in decode-and-forward cooperative protocols. We deduce the theoretic OP curves predicted by TRT and demonstrate by simulations that the OP curves will asymptotically overlap with the theoretic curves predicted by TRT.

Performance Analysis of Multi-Hop Decode-and-Forward Relaying with Selection Combining

  • Bao, Vo Nguyen Quoe;Kong, Hyung-Yun
    • Journal of Communications and Networks
    • /
    • v.12 no.6
    • /
    • pp.616-623
    • /
    • 2010
  • In this paper, exact closed-form expressions for outage probability and bit error probability (BEP) are presented for multi-hop decode-and-forward (DF) relaying schemes in conjunction with cooperative diversity, in which selection combining technique is employed at each node. We have shown that the proposed protocol offers remarkable diversity advantage over direct transmission as well as the conventional DF relaying schemes with the same combining technique. We then investigate the system performance when different diversity schemes are employed. It has been observed that the system performance loss due to selection combining relative to maximal ratio combining is not significant. Simulations are performed to confirm our theoretical analysis.

Relay Position in Decode-and-Forward Relay Systems to Achieve Full Diversity Gain (최대 다이버시티 이득을 얻기 위한 복호 후 전달 (Decode-and-Forward) 릴레이 시스템의 위치에 관한 연구)

  • Kwak, Kyung-Chul;Seo, Woo-Hyun;Hong, Dae-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.12A
    • /
    • pp.1260-1266
    • /
    • 2007
  • Error propagation of source-relay (S-R) link limits the performance of decode-and-forward (DF) relay and prohibits DF relay from achieving full diversity gain. In order to solve this problem, the proposed deployment strategy focuses on two objectives. One is to achieve full diversity gain, and the other is to minimize the used power of the DF relay system. In order to achieve full diversity, the error probability of S-R link should be lower than that of maximal ratio combining (MRC) at destination without error propagation since the error probability of the weaker link dominates the total error probability. The proposed strategy of relay positioning points out the range of the relay position for achieving full diversity, and the used power of the relay is minimized by this range. Analysis of error probability and simulation results prove that the two objectives are achieved by the proposed strategy of the relay position.

Naïve Decode-and-Forward Relay Achieves Optimal DMT for Cooperative Underwater Communication

  • Shin, Won-Yong;Yi, Hyoseok
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.4
    • /
    • pp.229-234
    • /
    • 2013
  • Diversity-multiplexing tradeoff (DMT) characterizes the fundamental relationship between the diversity gain in terms of outage probability and the multiplexing gain as the normalized rate parameter r, where the limiting transmission rate is give by rlog SNR (here, SNR denote the received signal-to-noise ratio). In this paper, we analyze the DMT and performance of an underwater network with a cooperative relay. Since over an acoustic channel, the propagation delay is commonly considerably higher than the processing delay, the existing transmission protocols need to be explained accordingly. For this underwater network, we briefly describe two well-known relay transmissions: decode-and-forward (DF) and amplify-and-forward (AF). As our main result, we then show that an instantaneous DF relay scheme achieves the same DMT curve as that of multiple-input single-output channels and thus guarantees the DMT optimality, while using an instantaneous AF relay leads at most only to the DMT for the direct transmission with no cooperation. To validate our analysis, computer simulations are performed in terms of outage probability.