• Title/Summary/Keyword: Disturbance Model

Search Result 1,126, Processing Time 0.036 seconds

Disturbance Observer-Based Control for 6-DOF Remotely Operated Underwater Vehicle with Model Uncertainties (모델 불확실성을 갖는 6자유도 원격조종 수중로봇의 외란 관측기 기반 제어)

  • Junsik Kim;Dongchul Lee;Youngjin Choi
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.1
    • /
    • pp.82-87
    • /
    • 2023
  • This paper proposes a disturbance observer-based control for 6-DOF remotely operated underwater vehicles with model uncertainties. The sum of external disturbance and the forces generated from model parameters except for the inertial matrix of the hydrodynamic model is defined as a lumped disturbance in this paper. Then, the lumped disturbance caused by model uncertainties and the external forces is estimated using the disturbance observer. Fortunately, the disturbance observer is constructed as a linear form because all the elements of the inertial matrix of the hydrodynamic model are constants. To verify the proposed control scheme, we show that the actual lumped disturbance is similar to the estimated lumped disturbance obtained by the disturbance observer. Finally, the position tracking performance in the disturbance environment is confirmed through the comparative study with a traditional inverse dynamics PD controller.

Design of a Model-Based Low-Order Disturbance Observer to Estimate a Sinusoidal Disturbance with Unknown Constant Offset (미지의 상수 오프셋을 갖는 삼각함수 외란 추정을 위한 모델기반 저차 외란 관측기 설계)

  • Lee, Cho-Won;Son, Young Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.652-658
    • /
    • 2016
  • In practical control systems differences between nominal and real systems arise from internal uncertainties and/or external disturbances. This paper presents a model-based low-order disturbance observer for a sinusoidal disturbance with unknown constant offset. By using the disturbance model of a biased harmonic signal, the proposed method can successfully estimate the biased sinusoidal disturbance with unknown amplitude and phase but known frequency. At the first stage of the observer design, a model-based disturbance observer is designed when all the system states are measurable. Next, a sufficient condition is presented for the proposed observer to estimate the sinusoidal disturbance with a minimal-order additional dynamics using only output measurement. Comparative computer simulations are performed to test the performance of the proposed method. The simulation results show the enhanced performance of the proposed disturbance observer.

Nonlinear model predictive control of chemical reactors

  • Lee, Jongku;Park, Sunwon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.419-424
    • /
    • 1992
  • A robust nonlinear predictive control strategy using a disturbance estimator is presented. The disturbance estimator is comprised of two parts: one is the disturbance model parameter adaptation and the other is future disturbance prediction. RLSM(recurrsive least square method) with a forgetting factor is used to de the uncertain distance model parameters and for the future disturbance prediction, future process outputs and inputs projected by the process model are used. The simulation results for chemical reactors indicate that a substantial improvement in nonlinear predictive control performance is possible using the disturbance estimator.

  • PDF

System and Disturbance Identification for Model-Based learning and Repetitive Control

  • 이수철
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2001.05a
    • /
    • pp.145-151
    • /
    • 2001
  • An extension of interaction matrix formulation to the problem of system and disturbance identification for a plant that is corrupter by both process and output disturbances is presented. With only an assumed upper bound on the order of the system and an assumed upper bound on the number of disturbance frequencies, it is shown that both the disturbance-free model and disturbance effect can be recovered exactly from disturbance-corrupted input-output data without direct measurement of the periodic disturbances. The rich information returned by the identification can be used by a performance-oriented model-based loaming or repetitive control system to eliminate unwanted periodic disturbances.

  • PDF

Robust Impedance Control of High-DOF Robot Based on Disturbance Observer Considering Residual Disturbance (잔여외란을 고려한 외란관측기 기반 고자유도 로봇의 강인 임피던스제어)

  • Kim, Junhyuk;Park, Seungkyu;Yoon, Taesung
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.1
    • /
    • pp.72-78
    • /
    • 2021
  • This paper presents a robust impedance control of high-DOF robot based on disturbance observer(DOB). A novel DOB is derived by considering the residual disturbance caused by the difference between actual disturbance and disturbance decoupling input which utilizes the estimated disturbance. It focuses on the elimination of the residual disturbance and improvement of the control performance as well as the good estimation of disturbances. In the control of high-DOF robot, numerical dynamic model, which is conducted by a software based on dynamics, is utilized because the analytical model of high-DOF robot is difficult to be obtained. The simulation of high-DOF robot with numerical dynamic model is provided to verify the performance of the proposed controller.

Sliding Mode Control of the Vehicle ABS with a Disturbance Observer for Model Uncertainties (모델 불확실성에 대한 외란 관측기를 가진 차량 ABS의 슬라이딩 모드 제어)

  • Hwang Jin-Kwon;Song Chul-Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.4 s.181
    • /
    • pp.44-51
    • /
    • 2006
  • This paper addresses sliding mode control of the anti-lock braking system (ABS) with a disturbance observer for model uncertainties such as vehicle parameter variation, un-modeled dynamics, and external disturbances. By using a nominal vehicle model, a sliding mode controller is designed to achieve a desired wheel slip ratio for ABS control. To compensate the model uncertainties, a disturbance observer is introduced with the help of a transfer function of a hydraulic brake dynamics. A proposed sliding mode controller with a disturbance observer is evaluated through simulations for model uncertainties. The simulation results show that the disturbance observer can enhance performances of sliding mode control for ABS.

Robust control of motor systems via a novel disturbance observation technique (새로운 외란관측기를 이용한 모터시스템의 강인제어)

  • 송성호;김점근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.199-202
    • /
    • 1997
  • In this paper, a novel disturbance observer is proposed in order to regulate the disturbance in motor systems. The proposed observer does not require the implementation of ideal derivative of the state since the inverse of the nominal model is not used in the design of the observer. The transfer gain from a disturbance to the output of the disturbance observer is one. So, there is no time-delay in the response due to the dynamics of the observer.

  • PDF

Robust Trajectory Control of a Hydraulic Excavator using Disturbance Observer in $H_\infty$Framework ($H_\infty$구조의 외란 관측기를 이용한 유압 굴삭기의 강인한 궤적 제어)

  • 최종환;김승수;양순용;이진걸
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.10
    • /
    • pp.130-140
    • /
    • 2003
  • This paper presents an $H_\infty$controller synthesis based on disturbance observer for the trajectory control of a hydraulic excavator. Compared to conventional robot manipulators driven by electrical motors, hydraulic excavator have more nonlinear and coupled dynamics. In particular, the interactions between an excavation tool and the materials being excavated are unstructured and complex. In addition, its operating modes depend on working conditions, which make it difficult to not only derive the exact mathematical model but also design a controller systematically. In this study, the approximated linear model obtained through off-line system identification is used as nominal plant model for a disturbance observer. A disturbance observer based tracking controller which considers the effect of disturbance and model uncertainty is synthesized in $H_\infty$frameworks. Simulation results are used to demonstrate the applicability of the proposed control scheme.

A Study on the Estimation of Cargo Weight for Container Crane System (컨테이너 크레인 시스템의 하물중량 추정에 관한 연구)

  • 김환성;박흥수;김상봉
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1998.10a
    • /
    • pp.175-180
    • /
    • 1998
  • In container crane system, the variation of cargo weight have effect on the travelling and sway control of load. For precise travelling and/or anti-sway control of crane system, the cargo weight should be measured and considered with control algorithm. But, and added attachment for measuring the cargo weight put restraint upon the control freedom for travelling and anti-sway. In this paper, we propose an estimation method for cargo weight in container crane system by using observation technique. First of all, we model the container crane system as a bilinear system and transform this model into linear system with external disturbance model. Second, we propose a generalized type - disturbance estimation observer and set a disturbance model, where, the cargo weight is related with the sway of load, and the sway is represented as a periodic external disturbance. Lastly, by using simulation we verify that the proposed algorithm of disturbance estimation observer is effective to estimate the cargo weight, and it will be used with anti-sway control algorithm.

  • PDF

Disturbance Analysis in an Optical Disk Drive Using Model Based Disturbance Observer and Waterfall Technique (모델 기반 외란 관측기와 Waterfall 해석을 이용한 광 디스크 외란 분석)

  • Choi, Jin-Young;Lee, Kwang-Hyun;Jun, Hong-Gul;Lee, Moon-Noh;Yang, Hyun Seok;Park, No-Cheol;Park, Young-Pil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.1 s.106
    • /
    • pp.40-49
    • /
    • 2006
  • A novel disturbance measurement method, model based disturbance observer (MBDO) for optical disk drives (ODDs), is proposed and the disturbance analysis using the proposed method is performed under various conditions. In ODDs, the quantitative and qualitative analysis for the generated disturbance during normal operation is very important to successful servo loop design. However, the disturbance measurement is difficult, and high precision measurement is necessary. Furthermore, the conventional disturbance measurement method using a LDV (laser Doppler vibrometer) has many difficulties in eccentricity direction due to the vertical movement of an optical disk. To solve this problem, the MBDO is proposed. First, the relationship between the servo loop for ODDs and the generated disturbance are briefly reviewed. Second, the principle of the MBDO is introduced, and the disturbance measurement results, which are measured by the MBDO and a LDV, are compared. In these experiments, test DVD-ROM disks are used to generate quantitative/qualitative disturbance. Then, the disturbance analysis under various conditions is performed using waterfall technique. This technique clearly shows the disturbance trend from the inner part of an optical disk to the outer part of it. Finally, the various disturbances measurement results are summarized and some remarks for it are commented.