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Abstract An extension of interaction matrix formulation to the problem of system and
disturbance identification for a plant that is corrupter by both process and output
disturbances is presented. With only an assumed upper bound on the order of the system
and an assumed upper bound on the number of disturbance frequencies, it is shown that
both the disturbance-free model and disturbance effect can be recovered exactly from
disturbance-corrupted input-output data without direct measurement of the periodic

disturbances. The rich information returned by the identification can be used by a

performance-oriented model-based
unwanted periodic disturbances.

1. Introduction

Iterative learning control and repetitive
control improve the tracking emror of a
repetitive  process by compensating for
unwanted periodic disturbances that are
present in a repetitive process [1]-[3]. Since
there are two independent variables (repetition
and time), learning and repetitive control can
be viewed from the perspective of 2-D
system theory [4]. At one end of the
spectrum are leaming and  repetitive
controllers that can guarantee convergence to
zero tracking error without requiring little
knowledge of the plant and the disturbances.
Such a general approach, although attractive
in theory, may have limited applicaions in
practice because these model-independent
controllers may exhibit unacceptable leaming
behavior while converging to zero tracking

learning or repetitive control

system to eliminate

error. At the other end of the spectrum are
performance-oriented model-based controllers.
These controllers require knowledge of the
plant and possibly of the disturbance
environment in their design. One does not
expect that such information can be derived
accurately form analytical modeling alone,
especially when the disturbances may not be
predicted accurately before hand. Consequently,
system identification under one form or
another is used to provide the needed
information. System identification has a unique
advantage that the identified model reflects
the true dynamics of the system under
consideration. For example, an experimentally
identified model naturally incorporates actuator
or sensor dynamics that may be left out in an
analytical model. Thus in the context of
designing model-based learmning or repetitive
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controllers, one asks the following question:
To what extent the system disturbance-free
dynamics and the disturbance environment can
be identified form input-output data that are
corrupted by unknown periodic disturbances?
It is clear that a comprehensive answer to
this question will significantly contribute
towards making learning and repetitive control
attractive in the real world

Such system and disturbance identification
has been addressed in [5]-[7] in the context
of "clear-box” adaptive control. In the
vibration control of flexible spacecraft, it can
easily be too demanding to ask for zero
tracking error. When the actuator is near a
node of a specific vibration mode, the amount
of control energy needed to eliminate
disturbance effects that excite the mode can
be so large that it saturates the actuator and
cripples the performance of the controller. The
term "clear-box” distinguishes the approach
from a black-box approach in that “clear—box”
brings out useful information for the control
problem that is normally hidden or left unused
by a typical black-box approach. Using only
disturbance-corrupted data (without direct
measurement of the disturbances themselves)
the method extracts the system
disturbance—free dynamics and the disturbance
effect. It develops information that describes
how serious the disturbances are for each
frequency, and simultaneously determines what
part of the control budget would be required
to cancel each frequency. This strategy not
only avoids preventable failures in difficult
problems but also allows efficient use of
limited control resources. The Clear-Box

algorithm has been successfully demonstrated
on a flexible structure at Princeton (8] and on
an Ultra Quiet Platform at the Naval
Postgraduate School [9].

Central to the clear-box system and
disturbance identification method is the
derivation of an equation that relates the
excitaion or control input to  the
disturbance-corrupted  output. Through a
so~called "interaction matrix”, the unknown
disturbance inputs are eliminated from this
input-output model. This matrix describes
how the coefficients of the identified model
become corrupted by  the  unknown
disturbances. Through this interaction matrix
both system disturbance effect can be
correctly recovered.

The derivation in [B]-{7] is for a linear
system with state disturbances and without a
direct transmission term in the output
equation. In practice, a direct transmission
term may be present. For example in the case
of an active engine mount where the objective
is to minimize the force transmission from an
unbalanced engine to the vehicle body, the
presence of a direct transmission term in the
output  equation is  automatic.  Road
disturbances also appear directly at the output
equation. In these cases, it is not immediately
clear how the interaction matrix, which
operates on the state equation as derived in
[5]-[7], can be used to eliminate the output
disturbances as well. It is the objective of this
paper to provide the necessary extension of
the interaction matrix method to allow for
these possibilities. The identification results
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presented here can then be used in the design
of smart repetitive and learning controllers to
eliminate unwanted periodic disturbances.

2. Problem Statement

Consider an n-th order, r-input, g-output
discrete—time system

xe+1)=Ax{k) +Bulk)+Badlk)
Y=Ctky+ Duullo o) (1)
where d(k)and v(k) are unknown periodic
plant and output disturbances, respectively.
One set of sufficiently rich data consisting of
excitation input w(k) and disturbance-corrupted
output y(k) is given. We wish to recover the
following information:
the disturbance-free state-space model
ABCD,
« the disturbance frequencies,
- the disturbance contribution on the output
data (total and from each frequency),
the disturbance-rejection control
(total and from each frequency).

signal

Other than the given set of
disturbance-corrupted data, nothing else is
known about the system, except an upper
bound on the order of the system and an
upper bound on the number of disturbance
frequencies can be assumed. Furthermore, the
disturbance frequencies may coincide with any
number of the system flexible modes.

3. Disturbance-Corrupted Input-Output
Model

In the following we derive an input—cutput
equation that relates the excitation input data
to disturbance-corrupted output data with all
disturbance input terms absent. By repeated
substitution, we have
2kt 1) =A% R) + L w,(B) + Lad, () )

(B = Ox(R) + ruy( &) + rd ( B) + T,0,(F)

where
u(k) (k)
up(B=| HEFD |y =] HEFD
ulke+ p—1) We+p—1)
d(k) v( k)
dyp=| CEFD |y = HEFD
K+ p—1) ok+p—1)

[=[ A”'B,..,AB, B],

fa=t A’ 'By, ... ,AB, Bj]

c
D 0
| B Do | F
: U I CAP-?
CAp_ZB b CB D CAﬂ_l
| CBe 0
CA"* B, CB,; 0
St

The interacion matrix M is introduced by
adding and subtracting the product My,(k) to
the right hand side of (2) to produce

x( b+ p) = APx(F) + [, (k) + [ ad ) (R)

+ M 8x(B) +ru,(B) + rd(B) + T,0,(B)]
_Myp(k)

=[ A"+ M81x(k) + [+ Mrlu, k)
+[fat Mrdd k) + M T, (k) — My, (k)
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We do not need to determine the interaction
matrix M but only concern with M its
existence at the moment. With m introduced,
the output equation becomes

y(k+ p) =1 CA®+ CMIx( &) + [ C[ + CMz]v,( k)
+[Cl 4 CMr)d, (B + CMr (k) 3
— CMy,(B) + Du( k) + Hu(k+ p)

We mow inpose the conditions for M, or
more precisely, for the product CM such that
explicit dependence of the
disturbance-corrupted output y(k) on the state
x(k) and unknown plant and output
disturbance inputs dk) and v(k) is eliminated
for dl k, ie,
CA’+ CM8=0

[CLa+ CMrd (B + CMr,0,(k) + Ho(k+ p)=0 @)

Let us examine the second equation in (4)
in more details. It can be re-written as
[(CLa+ CM1,), CMz,, HID /= O

where D; is a matrix of time-shifted state

and output disturbance time histories,

d,0)  dy(1)
0,000 w(D)
v{p) o(p+1) ..

Since we are dealing with periodic
disturbances, the rank of D; is limited by the
number disturbance frequencies present in the
data. Specifically, if the number of distinct
disturbance frequencies is f then the rank of
D, is 2+l where the 1 accounts for any
possible constant bias in the disturbances. Let
D denote a matrix formed by & or 2f+1
The

D/=

linearly independent colummns of Dy,
equation that CM must satisfy is

M [(9, Z'le‘*‘Z',,Dz]:'—[CAp, CCle‘f"HDj]
o)
three row

where D,D,,D3 are the

partiions of D corresponding to the
combinations Cl,+CMr,, CMz, and H
respectively. Since (5) is a set of linear
equations, the existence of CM is guaranteed
as long as the matrix (8, r;D;+17,D;] is full
rank (which is generally the case), and the
number of unknowns in the elements of the
product CM is at least equal to the number
of equations. Counting the number of
equations and unknowns, the condition on p
can be easily shown to be

pg=n+2f+1 (6)

Thus from an assumed upper bound on the
order of the system and an assumed upper
bound on the number of distinct disturbance
frequencies, p can be chosen such that the
above condition holds. As long as CM exists
that satisfies (5), Eq. (3) becomes

We+9)=[(CL+CMr), D] up(R) |-cuyn

u(k+p)

Equation (7) is an input-output equation that
relates excitation input data to
disturbance-corrupted data. Information about
the disturbance is embedded partly in the
product CM. Given a set of sufficiently rich
input excitation and disturbance-corrupted
output, the parameter combinations D, -CM,
and Cr+cM ¢ can be easily identified because
(7) is simply a set if linear equations with
these parameter combinations as coefficients.
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4. Recovery of Disturbance-Free State
Model

We are interested in recovering the
disturbance-free model but the coefficients
indentified from{7) can be thought of as
disturbance—corrupted. In the following we
show that it is possible to recover the
disturbance—free state-space model from the
disturbance—corrupted cofficients without
actually knowing the disturbances themselves.
This is a two—step process. We first recover
the system Markov parameters from the
identified coefficients, then the state-space
model is factorized from the recovered Markov
parameters. The second step 1s
straightforward and can be easily handled by
any realization procedure such as the one
described in [7] or [10]. In this paper only the
first step is shown Let the identified
parameter combinations -CM, C[+ CMr be
partitioned as follows,

[ @y, @p-1,y., @117 - CM @®

[ Bp, lgp_l,..., ,31] = C(I"'MZ'), /90:D

The first p Markov parameters can be
recovered as follows,

D= /30
(B = /31+ alD

CAB = 62"" 02D+ 0’1CB 9
CA’® 'B= B,+ a,D+ a, |CB+..+ a, CA® *B

To recover the additional Markov parameters,
we make use of the condition CA*+ CMS8=0
by postmultiplying it by B, then AB, etc. so
that

CA’B= a, CA*'B+...+ a,CB

CA**'B= a, CA’B+...+ 2 ,CAB 10

Any additional Markov parameters can be
recovered in the same mammer. Once a
sufficient number of Markov parameters is
obtained, a realization of system state—space
model A, B, C can be found by any
realization procedure [7], [10]

5. Recovery of Disturbance Contribution

Once the system disturbance-free model is
recovered, it is relatively straightforward to
recover the disturbance contribution on the
output data : One can create a model of the
form, [5], [7]

W(B) =a yb—1)+ -+ a yk— p) + Boulk)

+ Biulk— 1)+ + Bl k—p)+ (k) (11)

where the cofficients @, B; can be found
from the now known disturbance-free
state-space model as follows. Let A,B,C
denote a realization of A, B, C from the
recovered Markov parameters. The coefficients
“a;, B; are then given as

[ @5 @poy,, a1l=—CM (12)
[ By By1.os B1]1=C(C+M7), By=D

where the product CM satisfies

CA* CMS8 =0

so that only explicit dependence on the
system state is eliminated. For example, CM
can be found from

CM=-"TCA*S* (13)
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where + denotes the pseudo-~inverse operation
through the singular value decomposition.
Such an CAM does not eliminate the
dependence on the plant and output
disturbances, which is the intention here. All
the disturbance contribution is now grouped in
a term called distrubance effect, denoted by
k),

7R =[Cf 4+ CMz,)d(k—p)
+ CMr,v,(k— p) + Hu(k) 14)
Although the right hand side of(14) is not

known, the disturbance effect #7(k) can still
be computed from

KB =y B)—ay(k—1)— - — ak—p)

— Boulk) — Brulk—1) — - — Byulk—p) (15)

disturbance
denoted by

Once #nkk) is known, the
contribution on the output,
v 4(k), can be solved from

vAB =apdk— 1)+ + aylk—p)+ok)  (16)

6. Computation of Disturbance-Rejection
Control

The needed feedforward control signal to
cancel the disturbance present in the data,
denoted by  # Ak) can be found from
Bouf k) + Biufk—1)+ - + Buflk—p) =—7(k)

an
Up to this point we have dealt with only one
set of disturbance-corrupted input-output data.
Hence y k) is the portion of the given
output data corrupted by the disturbances and

u Ak) is the control signal that one could
use (but did not use)to cancel the effect of
yd(k).
Thus the emphasis so far has been on the
identification and after-the-fact analysis
problem. It should be noted here, however,
that the same equations can be used for
on-line disturbance identification and rejection
as well.
The readers are referred to [5]-{7] for more
details.

7. Partial Disturbance Models

As derived here, the disturbance effect 7(k)
includes all disturbance frequencies present in
the data.

It is also possible to use the interaction

matrix  formulation to  create  partial
disturbance models where (k) contains
information of one or more interested

disturbance frequencies, and information adout
the rest of the disturbance frequencies
remains embedded in the coefficients o, 8.

Such  partial disturbance models are
particularly useful in the computation of the
contribution of each disturbance frequency on
the system output and the corresponding
disturbance-rejection control signal needed.
This information is then used in a smart
disturbance rejection system where only
disturbance frequencies that are deemed
worthwhile to cancel are cancelled in view of
limited control resources. In such cases, partial
disturbance models can be used for partial
disturbance cancellation. The readers are
referred to [5] for more details as to how this
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can be accomplished.

8. Conclusions

This paper presents a formal extension of
the interaction matrix formulation to the
problem of system and  disturbance
identification for a plant that has a direct
transmission term and is corrupted by both
process and output disturbances. We have
show that under rather mild assumptions, both
the disturbance-free model and disturbance
effect can be recovered exactly from
disturbance-corrupted data. The identification
results can be used to design a smart
model-based
system to
disturbances.

learning or repetitive control
elimnate unwanted periodic
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