• Title/Summary/Keyword: Distribution statistical model

Search Result 1,255, Processing Time 0.034 seconds

Perceptional Change of a New Product, DMB Phone

  • Kim, Ju-Young;Ko, Deok-Im
    • 마케팅과학연구
    • /
    • 제18권3호
    • /
    • pp.59-88
    • /
    • 2008
  • Digital Convergence means integration between industry, technology, and contents, and in marketing, it usually comes with creation of new types of product and service under the base of digital technology as digitalization progress in electro-communication industries including telecommunication, home appliance, and computer industries. One can see digital convergence not only in instruments such as PC, AV appliances, cellular phone, but also in contents, network, service that are required in production, modification, distribution, re-production of information. Convergence in contents started around 1990. Convergence in network and service begins as broadcasting and telecommunication integrates and DMB(digital multimedia broadcasting), born in May, 2005 is the symbolic icon in this trend. There are some positive and negative expectations about DMB. The reason why two opposite expectations exist is that DMB does not come out from customer's need but from technology development. Therefore, customers might have hard time to interpret the real meaning of DMB. Time is quite critical to a high tech product, like DMB because another product with same function from different technology can replace the existing product within short period of time. If DMB does not positioning well to customer's mind quickly, another products like Wibro, IPTV, or HSPDA could replace it before it even spreads out. Therefore, positioning strategy is critical for success of DMB product. To make correct positioning strategy, one needs to understand how consumer interprets DMB and how consumer's interpretation can be changed via communication strategy. In this study, we try to investigate how consumer perceives a new product, like DMB and how AD strategy change consumer's perception. More specifically, the paper segment consumers into sub-groups based on their DMB perceptions and compare their characteristics in order to understand how they perceive DMB. And, expose them different printed ADs that have messages guiding consumer think DMB in specific ways, either cellular phone or personal TV. Research Question 1: Segment consumers according to perceptions about DMB and compare characteristics of segmentations. Research Question 2: Compare perceptions about DMB after AD that induces categorization of DMB in direction for each segment. If one understand and predict a direction in which consumer perceive a new product, firm can select target customers easily. We segment consumers according to their perception and analyze characteristics in order to find some variables that can influence perceptions, like prior experience, usage, or habit. And then, marketing people can use this variables to identify target customers and predict their perceptions. If one knows how customer's perception is changed via AD message, communication strategy could be constructed properly. Specially, information from segmented customers helps to develop efficient AD strategy for segment who has prior perception. Research framework consists of two measurements and one treatment, O1 X O2. First observation is for collecting information about consumer's perception and their characteristics. Based on first observation, the paper segment consumers into two groups, one group perceives DMB similar to Cellular phone and the other group perceives DMB similar to TV. And compare characteristics of two segments in order to find reason why they perceive DMB differently. Next, we expose two kinds of AD to subjects. One AD describes DMB as Cellular phone and the other Ad describes DMB as personal TV. When two ADs are exposed to subjects, consumers don't know their prior perception of DMB, in other words, which subject belongs 'similar-to-Cellular phone' segment or 'similar-to-TV' segment? However, we analyze the AD's effect differently for each segment. In research design, final observation is for investigating AD effect. Perception before AD is compared with perception after AD. Comparisons are made for each segment and for each AD. For the segment who perceives DMB similar to TV, AD that describes DMB as cellular phone could change the prior perception. And AD that describes DMB as personal TV, could enforce the prior perception. For data collection, subjects are selected from undergraduate students because they have basic knowledge about most digital equipments and have open attitude about a new product and media. Total number of subjects is 240. In order to measure perception about DMB, we use indirect measurement, comparison with other similar digital products. To select similar digital products, we pre-survey students and then finally select PDA, Car-TV, Cellular Phone, MP3 player, TV, and PSP. Quasi experiment is done at several classes under instructor's allowance. After brief introduction, prior knowledge, awareness, and usage about DMB as well as other digital instruments is asked and their similarities and perceived characteristics are measured. And then, two kinds of manipulated color-printed AD are distributed and similarities and perceived characteristics for DMB are re-measured. Finally purchase intension, AD attitude, manipulation check, and demographic variables are asked. Subjects are given small gift for participation. Stimuli are color-printed advertising. Their actual size is A4 and made after several pre-test from AD professionals and students. As results, consumers are segmented into two subgroups based on their perceptions of DMB. Similarity measure between DMB and cellular phone and similarity measure between DMB and TV are used to classify consumers. If subject whose first measure is less than the second measure, she is classified into segment A and segment A is characterized as they perceive DMB like TV. Otherwise, they are classified as segment B, who perceives DMB like cellular phone. Discriminant analysis on these groups with their characteristics of usage and attitude shows that Segment A knows much about DMB and uses a lot of digital instrument. Segment B, who thinks DMB as cellular phone doesn't know well about DMB and not familiar with other digital instruments. So, consumers with higher knowledge perceive DMB similar to TV because launching DMB advertising lead consumer think DMB as TV. Consumers with less interest on digital products don't know well about DMB AD and then think DMB as cellular phone. In order to investigate perceptions of DMB as well as other digital instruments, we apply Proxscal analysis, Multidimensional Scaling technique at SPSS statistical package. At first step, subjects are presented 21 pairs of 7 digital instruments and evaluate similarity judgments on 7 point scale. And for each segment, their similarity judgments are averaged and similarity matrix is made. Secondly, Proxscal analysis of segment A and B are done. At third stage, get similarity judgment between DMB and other digital instruments after AD exposure. Lastly, similarity judgments of group A-1, A-2, B-1, and B-2 are named as 'after DMB' and put them into matrix made at the first stage. Then apply Proxscal analysis on these matrixes and check the positional difference of DMB and after DMB. The results show that map of segment A, who perceives DMB similar as TV, shows that DMB position closer to TV than to Cellular phone as expected. Map of segment B, who perceive DMB similar as cellular phone shows that DMB position closer to Cellular phone than to TV as expected. Stress value and R-square is acceptable. And, change results after stimuli, manipulated Advertising show that AD makes DMB perception bent toward Cellular phone when Cellular phone-like AD is exposed, and that DMB positioning move towards Car-TV which is more personalized one when TV-like AD is exposed. It is true for both segment, A and B, consistently. Furthermore, the paper apply correspondence analysis to the same data and find almost the same results. The paper answers two main research questions. The first one is that perception about a new product is made mainly from prior experience. And the second one is that AD is effective in changing and enforcing perception. In addition to above, we extend perception change to purchase intention. Purchase intention is high when AD enforces original perception. AD that shows DMB like TV makes worst intention. This paper has limitations and issues to be pursed in near future. Methodologically, current methodology can't provide statistical test on the perceptual change, since classical MDS models, like Proxscal and correspondence analysis are not probability models. So, a new probability MDS model for testing hypothesis about configuration needs to be developed. Next, advertising message needs to be developed more rigorously from theoretical and managerial perspective. Also experimental procedure could be improved for more realistic data collection. For example, web-based experiment and real product stimuli and multimedia presentation could be employed. Or, one can display products together in simulated shop. In addition, demand and social desirability threats of internal validity could influence on the results. In order to handle the threats, results of the model-intended advertising and other "pseudo" advertising could be compared. Furthermore, one can try various level of innovativeness in order to check whether it make any different results (cf. Moon 2006). In addition, if one can create hypothetical product that is really innovative and new for research, it helps to make a vacant impression status and then to study how to form impression in more rigorous way.

  • PDF

직장암에서 수술단독 또는 수술후 방사선치료 -생존율, 골반종양제어율, 예후인자를 중심으로- (Surgery Alone or Postoperative Adjuvant Radiotherapy in Rectal Cancer - With Respect to Survival, Pelvic Control, Prognostic Factor -)

  • 남택근;안성자;나병식
    • Radiation Oncology Journal
    • /
    • 제19권4호
    • /
    • pp.327-334
    • /
    • 2001
  • 목적 : 직장암에 대한 수술 단독 또는 수술후 방사선치료를 받은 환자를 대상으로 골반종양제어율과 생존율, 합병증 발생률, 예후인자 등을 후향적으로 비교 분석하여 방사선치료의 역할을 평가한다. 대상 및 방법 : 1982년 2월부터 1996년 12월까지 총 212명의 환자가 modified Astler-Coiler 병기 $B2\~C3$ 직장암으로 진단되어 근치적목적의 수술단독 또는 수술후 방사선치료를 시행하였는데, 이중 39.6 Gy 미만의 방사선치료를 받은 18명을 제외한 194명을 대상으로 하였다. 104명은 수술후 방사선치료를 받았고 90명은 수술 단독을 시행하였다. 방사선치료는 일일 조사량 $1.8\~2.0\;Gy$로 주 5회씩 전골반강에 $39.6\~55.8\;Gy$ (평균:49.9 Gy)를 조사하였고 필요시 원발 종양 절제부위에 $5.4\~10\;Gy$를 추가 조사하였다. 생존율과 골반종양제어율의 산출은 Kaplan-Meier방법으로, 이들의 통계적 유의성검증은 Log-rank test로 하였다. 다요인 분석은 Cox proportional hazards model을 이용하였다. 결과 : 전체 환자의 5년 생존율 및 무병 생존율은 각각 $53\%,\;49\%$이었다. 수술단독군과 방사선치료 추가군의 5년 생존율은 각각 $63\%$$45\%$로 유의한 차이를 보였다(p=0.03). 그러나 이러한 차이는 방사선치료 추가군에서 진행된 병기의 환자가 더 많이 분포함에 기인한 것으로 생각되었다(p<0.05 by $\chi^2-test$). 수술단독군과 방사선치료 추가군의 5년생존율은 병기 B2+3, C1, C2+3 군에서 각각 $68\%$$55\%$ (p=0.09), $100\%$$100\%,\;40\%$$33\%$ (p=0.71)로 두 군간의 유의한 차이는 없었다. 위의 병기별 5년 무병생존율은 각각 $65\%$$49\%$ (p=0.14), $100\%$$100\%,\;33\%$$31\%$ (p=0.46)로 역시 유의한 차이는 없었다. 전체 환자의 5년 골반종양제어율은 $72.5\%$이었다. 수술단독군과 방사선치료 추가군의 골반종양제어율은 각각 $71\%,\;74\%$이었다(p=0.41). 병기 B2+3, C1, C2+3군에서 수술달독군과 방사선치료 추가군의 골반종양제어율은 각각 $79\%$$75\%$ (p=0.88), $100\%$$100\%,\;44\%$$68\%$ (p=0.01)이었다. 전체 환자를 대상으로 다요인 분석을 시행한 결과 생존율과 무병생존율에 병기만이 유의하였고 두 치료 군에서도 역시 병기가 유의한 인자로 나타났다. 전체환자에서 골반종양제어율에 유의한 예후인자로 다요인분석을 시행한 결과 병기와 수술방법이 유의하였다. 수술단독군에서는 병기만이 유의하였고 방사선치료 추가군에서는 수술방법만이 유의하여 복부회음절제술군의 골반종양재발률이 높았다. 결론 : 본 후향적 연구에서 수술 후 보조적 방사선치료를 시행하여 수술단독군에 비해 병기 C2+3군에서 골반종양제어율이 향상되었음을 알 수 있었다. 그러나 병기 B2이상의 모든 환자에서 골반종양제어율 뿐만 아니라 생존율의 향상을 가져오기 위해서는 최근 효용성이 널리 입증된 연속주사법의 5-FU를 포함한 동시적 항함화학방사선 병용요법이 시도되어야 할 것으로 생각된다.

  • PDF

대전광역시 노령화 지구의 공간적 분포 패턴 (Spatial Distribution of Aging District in Taejeon Metropolitan City)

  • 정환영;고상임
    • 한국지역지리학회지
    • /
    • 제6권2호
    • /
    • pp.1-19
    • /
    • 2000
  • 본 연구는 중부지역의 중심지로 발전하고 있는 대전광역시를 대상으로 노령화 지구의 공간적 분포 패턴을 분석하고자 하였다. 그 결과 노령화 지구는 대전광역시 CBD지역과 CBD인접지역, 그리고 주변지역간에 뚜렷한 차이를 나타내고 있으며, 그 분포에 있어서도 양극화 현상이 뚜렷함을 확인하였다. 그리고 인구감소지구는 노령화지구와 대체로 중복되어 있고, 비노령인구의 전출에 의하여 노령인구비율이 높아지고 있으며, 인구증가지구는 노령화 지구와 전혀 중복되어 나타나지 않고, 비노령인구의 전입에 의해 노령인구비율이 낮아지고 있다. 인구이동에 의한 노령인구의 증가여부를 확인하기 위하여 각 그룹별로 연령 코호트 분석방법을 이용하여 노령화 지구의 출현요인을 분석한 결과, 인구노령화의 진행 은 인구의 사회적 증감률 변화와 매우 밀접하게 관련되어 있고, 특히 비노령인구의 전출에 의해 노령인구비율이 높아지고 있음을 확인할 수 있었다. CBD지역과 CBD인접지역을 포함한 중심시가지에서는 결혼, 새로운 주택취득에 의한 세대분리 등의 전출, 즉, 비노령인구의 전출이 인구노령화를 촉진하는 주요인이 되고 있고, 반면 주변지역에서는 비노령인구의 지구의로의 전출뿐 아니라 새롭게 노령인구로 편입되어져 가는 연령층 인구와 사망률의 저하에 따른 평균수명의 연장으로 인한 노령인구의 절대적 증대가 인구노령화를 촉진하는 요인으로 작용하고 있다.

  • PDF

Support Vector Regression을 이용한 GARCH 모형의 추정과 투자전략의 성과분석 (Estimation of GARCH Models and Performance Analysis of Volatility Trading System using Support Vector Regression)

  • 김선웅;최흥식
    • 지능정보연구
    • /
    • 제23권2호
    • /
    • pp.107-122
    • /
    • 2017
  • 주식시장의 주가 수익률에 나타나는 변동성은 투자 위험의 척도로서 재무관리의 이론적 모형에서뿐만 아니라 포트폴리오 최적화, 증권의 가격 평가 및 위험관리 등 투자 실무 영역에서도 매우 중요한 역할을 하고 있다. 변동성은 주가 수익률이 평균을 중심으로 얼마나 큰 폭의 움직임을 보이는가를 판단하는 지표로서 보통 수익률의 표준편차로 측정한다. 관찰 가능한 표준편차는 과거의 주가 움직임에서 측정되는 역사적 변동성(historical volatility)이다. 역사적 변동성이 미래의 주가 수익률의 변동성을 예측하려면 변동성이 시간 불변적(time-invariant)이어야 한다. 그러나 대부분의 변동성 연구들은 변동성이 시간 가변적(time-variant)임을 보여주고 있다. 이에 따라 시간 가변적 변동성을 예측하기 위한 여러 계량 모형들이 제안되었다. Engle(1982)은 변동성의 시간 가변적 특성을 잘 반영하는 변동성 모형인 Autoregressive Conditional Heteroscedasticity(ARCH)를 제안하였으며, Bollerslev(1986) 등은 일반화된 ARCH(GARCH) 모형으로 발전시켰다. GARCH 모형의 실증 분석 연구들은 실제 증권 수익률에 나타나는 두터운 꼬리 분포 특성과 변동성의 군집현상(clustering)을 잘 설명하고 있다. 일반적으로 GARCH 모형의 모수는 가우스분포로부터 추출된 자료에서 최적의 성과를 보이는 로그우도함수에 대한 최우도추정법에 의하여 추정되고 있다. 그러나 1987년 소위 블랙먼데이 이후 주식 시장은 점점 더 복잡해지고 시장 변수들이 많은 잡음(noise)을 띠게 됨에 따라 변수의 분포에 대한 엄격한 가정을 요구하는 최우도추정법의 대안으로 인공지능모형에 대한 관심이 커지고 있다. 본 연구에서는 주식 시장의 주가 수익률에 나타나는 변동성의 예측 모형인 GARCH 모형의 모수추정방법으로 지능형 시스템인 Support Vector Regression 방법을 제안한다. SVR은 Vapnik에 의해 제안된 Support Vector Machines와 같은 원리를 회귀분석으로 확장한 모형으로서 Vapnik의 e-insensitive loss function을 이용하여 비선형 회귀식의 추정이 가능해졌다. SVM을 이용한 회귀식 SVR은 두터운 꼬리 분포를 보이는 주식시장의 변동성과 같은 관찰치에서도 우수한 추정 성능을 보인다. 2차 손실함수를 사용하는 기존의 최소자승법은 부최적해로서 추정 오차가 확대될 수 있다. Vapnik의 손실함수에서는 입실론 범위내의 예측 오차는 무시하고 큰 예측 오차만 손실로 처리하기 때문에 구조적 위험의 최소화를 추구하게 된다. 금융 시계열 자료를 분석한 많은 연구들은 SVR의 우수성을 보여주고 있다. 본 연구에서는 주가 변동성의 분석 대상으로서 KOSPI 200 주가지수를 사용한다. KOSPI 200 주가지수는 한국거래소에 상장된 우량주 중 거래가 활발하고 업종을 대표하는 200 종목으로 구성된 업종 대표주들의 포트폴리오이다. 분석 기간은 2010년부터 2015년까지의 6년 동안이며, 거래일의 일별 주가지수 종가 자료를 사용하였고 수익률 계산은 주가지수의 로그 차분값으로 정의하였다. KOSPI 200 주가지수의 일별 수익률 자료의 실증분석을 통해 기존의 Maximum Likelihood Estimation 방법과 본 논문이 제안하는 지능형 변동성 예측 모형의 예측성과를 비교하였다. 주가지수 수익률의 일별 자료 중 학습구간에서 대칭 GARCH 모형과 E-GARCH, GJR-GARCH와 같은 비대칭 GARCH 모형에 대하여 모수를 추정하고, 검증 구간 데이터에서 변동성 예측의 성과를 비교하였다. 전체 분석기간 1,487일 중 학습 기간은 1,187일, 검증 기간은 300일 이다. MLE 추정 방법의 실증분석 결과는 기존의 많은 연구들과 비슷한 결과를 보여주고 있다. 잔차의 분포는 정규분포보다는 Student t분포의 경우 더 우수한 모형 추정 성과를 보여주고 있어, 주가 수익률의 비정규성이 잘 반영되고 있다고 할 수 있다. MSE 기준으로, SVR 추정의 변동성 예측에서는 polynomial 커널함수를 제외하고 linear, radial 커널함수에서 MLE 보다 우수한 예측 성과를 보여주었다. DA 지표에서는 radial 커널함수를 사용한 SVR 기반의 지능형 GARCH 모형이 가장 우수한 변동성의 변화 방향에 대한 방향성 예측력을 보여주었다. 추정된 지능형 변동성 모형을 이용하여 예측된 주식 시장의 변동성 정보가 경제적 의미를 갖는지를 검토하기 위하여 지능형 변동성 거래 전략을 도출하였다. 지능형 변동성 거래 전략 IVTS의 진입규칙은 내일의 변동성이 증가할 것으로 예측되면 변동성을 매수하고 반대로 변동성의 감소가 예상되면 변동성을 매도하는 전략이다. 만약 변동성의 변화 방향이 전일과 동일하다면 기존의 변동성 매수/매도 포지션을 유지한다. 전체적으로 SVR 기반의 GARCH 모형의 투자 성과가 MLE 기반의 GARCH 모형의 투자 성과보다 높게 나타나고 있다. E-GARCH, GJR-GARCH 모형의 경우는 MLE 기반의 GARCH 모형을 이용한 IVTS 전략은 손실이 나지만 SVR 기반의 GARCH 모형을 이용한 IVTS 전략은 수익으로 나타나고 있다. SVR 커널함수에서는 선형 커널함수가 더 좋은 투자 성과를 보여주고 있다. 선형 커널함수의 경우 투자 수익률이 +526.4%를 기록하고 있다. SVR 기반의 GARCH 모형을 이용하는 IVTS 전략의 경우 승률도 51.88%부터 59.7% 사이로 높게 나타나고 있다. 옵션을 이용하는 변동성 매도전략은 방향성 거래전략과 달리 하락할 것으로 예측된 변동성의 예측 방향이 틀려 변동성이 소폭 상승하거나 변동성이 하락하지 않고 제자리에 있더라도 옵션의 시간가치 요인 때문에 전체적으로 수익이 실현될 수도 있다. 정확한 변동성의 예측은 자산의 가격 결정뿐만 아니라 실제 투자에서도 높은 수익률을 얻을 수 있기 때문에 다양한 형태의 인공신경망을 활용하여 더 나은 예측성과를 보이는 변동성 예측 모형을 개발한다면 주식시장의 투자자들에게 좋은 투자 정보를 제공하게 될 것이다.

온라인 서비스 품질이 고객만족 및 충성의도에 미치는 영향 -항공권 예약.발권 웹사이트를 중심으로- (The Effects of Online Service Quality on Consumer Satisfaction and Loyalty Intention -About Booking and Issuing Air Tickets on Website-)

  • 박종기;고도은;이승창
    • 한국유통학회지:유통연구
    • /
    • 제15권3호
    • /
    • pp.71-110
    • /
    • 2010
  • 본 연구에서는 항공권 예약 발권 웹사이트의 서비스 품질을 측정 뿐만 아니라 서비스 회복도 측정하고자 하였다. 또한 서비스 품질과 서비스 회복이 고객만족 및 충성의도에 미치는 영향관계를 실증하고자 하였다. 온라인 서비스 품질과 온라인 서비스 회복의 측정을 위해 Parasuraman, Zeithaml, & Malhotra(2005)가 개발한 E-S-QUAL과 E-RecS-QUAL을 사용했으며, 했다. E-S-QUAL은 온라인 서비스 품질을 측정하는 도구로써, 효율성, 시스템 이용가능성, 이행성, 프라이버시의 4개 차원 22개 항목으로 구성된다. E-RecS-QUAL은 온라인 서비스 회복을 측정하는 도구로써, 반응, 보상, 접촉의 3개 차원 11개 항목으로 구성된다. 실증분석을 위한 설문조사는 항공사나 여행사의 웹사이트를 통해 국내 외 항공권을 구입해 본 경험이 있는 소비자를 대상으로 실시하였는데, 총 400부가 회수되었고, 이 중 342부를 최종분석에 사용하였다. 실증분석을 위해 AMOS 7.0과 SPSS 15.0을 사용하였다. 먼저, SPSS 15.0을 사용하여, 요인점수를 이용한 회귀분석으로 가설검증을 한 결과, <가설 I-1, 2, 3, 4, II-1, 2, 3, III-1, IV-1>이 전부 채택되었다. 온라인 서비스 품질과 온라인 서비스 회복의 각 차원은 모두 전반적인 서비스 품질에 유의한 영향을 보였고, 전반적인 서비스 품질은 고객만족에 유의한 영향을 미쳤다. 마지막으로 고객만족 역시 충성의도에 유의한 영향을 미치는 것으로 확인되었다. 한편 AMOS 7.0을 사용하여 모형 분석을 하였는데, 모형의 적합도는 가설검증을 하기에 합당한 수치가 나왔다. 이를 토대로 가설검증을 한 결과, <가설 I-1, 3, II-1, 3, III-1, IV-1>은 채택되었고, <가설 I-2, 4, II-2>는 기각되었다. 이 결과는 Parasuraman et al.(2005)이 주장한 것처럼 E-S-QUAL을 나타내는 데는 요인점수를 이용한 회귀분석이 더 적합하다는 것을 보여주는 것이라고 판단된다. 이를 토대로 본 연구의 시사점을 정리하였다.

  • PDF