• Title/Summary/Keyword: Distribution of body heat

Search Result 100, Processing Time 0.029 seconds

Determination of Thermal Contact Conductance of an Injection Mold Assembly for the Prediction of Mold Surface Temperature

  • Lee, Ki-Yeon;Kim, Kyeong-Min;Park, Keun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.6
    • /
    • pp.1008-1012
    • /
    • 2012
  • Injection molds are fabricated by assembling a number of plates in which mold core and cavity components are inserted. The assembled structure causes a number of contact interfaces between each component where the heat transfer is affected by the thermal contact resistance. However, the mold assembly has been treated as a one body in numerical analyses of injection molding, which has a limitation in predicting the mold temperature distribution during the molding cycle. In this study, a numerical approach that considers the thermal contact effect is proposed to predict the heat transfer characteristics of an injection mold assembly. To find the thermal contact conductance between the mold core and plate, a number of finite element (FE) simulations were performed with the design of experiment (DOE) and statistical analysis. Thus, the heat transfer analyses using the obtained conductance values can provide more reliable results than conventional one-body simulations.

Water carrying iron (iii) oxide (Fe3O4) ferrofluid flow and heat transfer due to deceleration of a rotating plate

  • Bhandari, Anupam
    • Structural Engineering and Mechanics
    • /
    • v.82 no.5
    • /
    • pp.679-690
    • /
    • 2022
  • This research effort examines the flow behavior and heat transfer assessment of water carrying iron (iii) oxide magnetic fluid due to a rotating and moving plane lamina under the influence of magnetic dipole. The effect of rotational viscosity and magnetic body force is taken into consideration in the present study. The involvement of the moving disk makes a significant contribution to the velocity distribution and heat transfer in rotational flow. Vertical movement of the disk keeps the flow unsteady and the similarity transformation converts the governing equation of unsteady flow into nonlinear coupled differential equations. The non-dimensional equation in the present system is solved through the finite element procedure. Optimizing the use of physical parameters described in this flow, such results can be useful in the rotating machinery industries for heat transfer enhancement.

Boundary Element Analysis of Thermal Stress Intensity Factor for Interface Crack under Vertical Uniform Heat Flow (경계요소법을 이용한 수직열유동을 받는 접합경계면 커스프균열의 열응력세기계수 결정)

  • Lee, Kang-Yong;Baik, Woon-Cheon
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1794-1804
    • /
    • 1993
  • The thermal stress intensity factors for interface cracks of Griffith and symmetric lip cusp types under vertical uniform heat flow in a finite body are calculated by boundary element method. The boundary conditions on the crack surfaces are insulated or fixed to constant temperature. The relationship between the stress intensity factors and the displacements on the nodal point of a crack tip element is derived. The numerical values of the thermal stress intensity factors for interface Griffith crack in an infinite body and for symmetric lip cusp crack in a finite and homogeneous body are compared with the previous solutions. The thermal stress intensity factors for symmetric lip cusp interface crack in a finite body are calculated with respect to various effective crack lengths, configuration parameters, material property ratios and the thermal boundary conditions on the crack surfaces. Under the same outer boundary conditions, there are no appreciable differences in the distribution of thermal stress intensity factors with respect to each material properties. But the effect of crack surface thermal boundary conditions on the thermal stress intensity factors is considerable.

Analysis of Temperature Distribution and slip in Rapid Thermal Processing (급속 열처리시 실리콘 웨이퍼의 온도분포와 슬립 현상의 해석)

  • Lee, Hyouk;Yoo, Young-Don;Earmme, Youn-Young;Shin, Hyun-Dong;Kim, Choong-Ki
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.4
    • /
    • pp.609-620
    • /
    • 1992
  • A numerical solution of temperature and thermally induced stress in a wafer during rapid thermal processing (R.T.P) is obtained, and an analysis of onset and propagation of slip is performed and compared with experiment. In order to calculate temperature distribution of a wafer in R.T.P system, heat conduction equation that incorporated with radiative and convective heat transfer model is solved, and the solution of the equation is calculated numerically using alternating direction implicit (A.D.I) method. In dealing with radiative heat transfer, a partially transparent body that absorbs the radiation energy is assumed and this transparent body undergoes multiple internal reflections and absorptions. Two dimensional (assuming plane stress) thermoelastic constitutive equation is used to calculate thermal stress induced in a wafer and finite element method is employed to solve the equation numerically. The stress resolved in the slip directions on the slip planes of silicon is compared with the yield stress of silicon in order to predict the slip. The result of the analysis shows that the wafer temperature at which slip occurs is affected by the heating rate of the R.T.P system. It is observed that once slip occurs in the wafer, the slip grows.

Aerodynamic Heating Analysis of Supersonic Missile Body and Fin (초음속 유도탄 동체와 날개의 공력가열 해석)

  • Kang, Kyoung-Tai
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.20-28
    • /
    • 2008
  • Missile operating at supersonic conditions experiences considerable high temperature environments that is caused by aerodynamic heating as a result of the temperature gradient through boundary layer that surrounds it. This is one of important problems to the designer due to temperature limitation of structural materials. Because prediction of aerodynamic heating on missile needs unsteady calculation according to a flight trajectory, approximate method approach is efficient at design stage. In this paper, improved aerodynamic heating analysis scheme is introduced, which calculates heat flow and temperature by simple pressure field prediction on a missile body and fin. The prediction results are compared with measured data and MINIVER codes results.

ADVANCED ARGON-ARC WELDING PROCESSES OF AIRCRAFT STRUCTURES FROM HIGH STRENGTH STEELS AND HIGHT ALLOYS

  • Chtrikman, M.
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.101-106
    • /
    • 2002
  • Requirements to fabrication processes for arc welding of highly loaded thick-walled joint and problems of research and development in term s of the tendency for the modern aircraft structure development are outlined. A justified, choice of the development line of the new promising welding processes for solution of these problems is presented. A complex of new welding processes and technologies for making highly reliable joints with different thickness (up to 120 mm and more) and length of weld (up to 0.1 m; 0.1-0.5 m and more than 0.5 m) has bee developed. It is shown that the possibility to control the heat flow distribution over the groove surface of the welded joints provides for improved reliability. The new welding processes are equipment are effectively used in serial production of the Mykoyan md Sukhoi supersonic aircrafts as well as in AN-124 Ruslan and AN-225 Mriya wide body aircrafts.

  • PDF

A Comparative Study of Response of KS-15 Questionnaire between Migrant Vietnam and Daejeon Women (대전시 여성과 베트남 이주여성의 단축형 사상체질진단 설문지(KS-15) 응답 비교)

  • Baek, Younghwa;Kim, Hoseok;Jang, Eunsu
    • Journal of Sasang Constitutional Medicine
    • /
    • v.33 no.2
    • /
    • pp.25-36
    • /
    • 2021
  • Objectives The aim of this study was to reveal the difference of body shape, personality, physiological characteristics between migrant Vietnam and Daejeon women using propensity matching. Methods The number of 274 Vietnamese migrant women and Daejeon city women participate in this study. We surveyed Sasang Constitution (SC) expressive factor, such Body Mass Index (BMI) using Korea Sasang Constitutional Diagnostic Questionnaire (KS-15). A Chi-square test and a T-test were used. Significant p was .05. Results The height, weight and BMI of Daejeon women was bigger than those of Vietnam(p<.001). There was significant difference in personality characteristics in 'broad mind-narrow mind'(p<.001), 'Active-Passive'(p<.001), 'Masculine-Feminine'(p=.002). There was significant differentce in physio-pathological symptom in 'digestion'(p<.001), 'urine time'(p<.001), 'feeling cold/heat'(p=.006). There was significant differentce in distribution of SC between Vietnam and Daejeon women(p=.025). Conclusions This study reveals that there is differentce in body shape, personality, physiological characteristics between Vietnam and Daejeon women. These factors might influence on SC distribution between Vietnam and Dajeon women

A COMPUTATIONAL ANALYSIS OF FINITE RATE CHEMICALLY REACTING FLOW BY USING UPWIND N-S METHOD

  • Seo J. I.;Kwon C. O.;Song D. J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.166-171
    • /
    • 2000
  • A two-dimensional/axisymmetric CSCM upwind flux difference splitting Wavier-Stokes method has been developed to study the finite rate chemically react-ing invisicd and viscous hypersonic flows over blunt-body. A upwind method was chosen due to its robustness in capturing the strong bow shock waves. For the nonequilibrium chemically reacting air, NS-I species conservation equations were strongly coupled with flowfield equations through convection and species production terms. The nonequilibrium wall pressure and heat transfer rate distributions along the vehicle were compared with those from equilibrium and perfect gas calculations. The nonequilibrium species distribution shows the reduced concentrations of O and N species when compared with equilibrium species distribution. The solutions resolved strong bow shock waves md heat transfer rate very accurately when compared with central difference schemes.

  • PDF

Finite Element Analysis of Solidification Process Using the Temperature-Enthalpy Relationship (온도-엔탈피 관계를 이용한 응고과정의 유한요소 해석)

  • Cho, Seong Soo;Ha, Sung Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.10
    • /
    • pp.1213-1222
    • /
    • 1999
  • A finite element method is developed for calculating the temperature and enthalpy distribution and accordingly the solid, liquid and mushy zone in a three-dimensional body subjected to any heat boundary conditions. The method concurrently consider both temperature and enthalpy for consideration of the latent heat effect, differently from other methods of using a special energy balance equation for solving a mushy zone. The developed brick element has eight nodes with one degree of freedom at each node. The numerical method and procedure are verified using the results of one and two dimensional analytic solutions and by other researchers. It is shown that the present method presents a consistent and stable results in either abrupt or ranged phase change problems. Moreover, the numerical results by the present method are hardly effected by the calculation time steps which otherwise are difficult to determine in most phase change problems. Finally, as a three-dimensional application, a T-shaped body of a phase change is presented and the temperature and enthalpy variation along the time are solved.

Functional Underwear Development for Elderly Woman from 3D Body Model applying PCM treatment (PCM 가공과 3차원 인체 모델링 기술을 적용한 노년 여성용 기능성 언더웨어 설계)

  • Choi, Sin-Ae;Kim, Tae-gyou;Park, Youong-Min;Shin, Ji-Young;Park, Soonjee
    • Fashion & Textile Research Journal
    • /
    • v.18 no.4
    • /
    • pp.457-467
    • /
    • 2016
  • This study aimed to develop functional underwear for elderly women in their sixties in terms of good fit, wear comfort and body temperature regulation. To satisfy elderly women's physical and metabolical needs, an automatic temperature control system via PCM treatment was applied. Underwear pattern was produced by producing body surface replica, which was derived from 3D body parametric model. Differential ratios of outline length and area between 3D surface and 2D plane were 1.4% and 0.5%, respectively. The reduction rate was determined as 10% through the expert's evaluation. PCM treated fabric showed higher Q-max, meaning that it can facilitate the thermal transition in hot situation. Moreover, it also showed higher insulation to preserve heat and keep warm microclimate in a cold weather. Heat distribution measurements on various body parts revealed that the temperature after PCM treatment was significantly higher. The clothing pressure after 10% pattern reduction showed higher before reduction, at the same time, even lower than the comfort clothing pressure range of $5{\sim}10gf/cm^2$, implying that experimental garment of this research is acceptable in terms of clothing pressure. Evaluation results on the comfort to move in various motions proved that adequate clothing pressure improved the wear comfort in various motions.