• Title/Summary/Keyword: Distribution of Rainfall

Search Result 907, Processing Time 0.026 seconds

Rainfall analysis considering watershed characteristics and temporal-spatial characteristics of heavy rainfall (집중호우의 시·공간적 특성과 유역특성을 고려한 강우분석 연구)

  • Kim, Min-Seok;Choi, Ji-Hyeok;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.8
    • /
    • pp.739-745
    • /
    • 2018
  • Recently, the incidence of heavy rainfall is increasing. Therefore, a rainfall analysis should be performed considering increasing frequency. The current rainfall analysis for hydrologic design use the hourly rainfall data of ASOS with a density of 36 km on the Korean Peninsula. Therefore, medium and small scale watershed included Thiessen network at the same rainfall point are analyzed with the same design rainfall and time distribution. This causes problem that the watershed characteristics can not be considered. In addition, there is a problem that the temporal-spatial change of the heavy rainfall occurring in the range of 10~20 km can not be considered. In this study, Author estimated design rainfall considering heavy rainfall using minutely rainfall data of AWS, which are relatively dense than ASOS. Also, author analyzed the time distribution and runoff of each case to estimate the huff's method suitable for the watershed. The research result will contribute to the estimation of the design hydrologic data considering the heavy rainfall and watershed characteristics.

Proposed One-Minute Rain Rate Conversion Method for Microwave Applications in Korea

  • Shrestha, Sujan;Choi, Dong-You
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.3
    • /
    • pp.153-162
    • /
    • 2016
  • Microwave and millimeter waves are considered suitable frequency ranges for diverse applications. The prediction of rain attenuation required the 1-min rainfall rate distribution, particularly for data obtained locally from experimental measurement campaigns over a given location. Rainfall rate data acquired from Korea Meteorological Administration (KMA) for nine major sites are analyzed to investigate the statistical stability of the cumulative distribution of rainfall rate, as obtained from a 10-year measurement. In this study, we use the following rain rate conversion techniques: Segal, Burgueno et al., Chebil and Rahman, exponential, and proposed global coefficient methods. The performance of the proposed technique is tested against that of the existing rain rate conversion techniques. The nine sites considered for the average 1-min rain rate derivation are Gwangju, Daegu, Daejeon, Busan, Seogwipo, Seoul, Ulsan, Incheon, and Chuncheon. In this paper, we propose a conversion technique for a suitable estimation of the 1-min rainfall rate distribution.

Analysis of Uncertainty of Rainfall Frequency Analysis Including Extreme Rainfall Events (극치강우사상을 포함한 강우빈도분석의 불확실성 분석)

  • Kim, Sang-Ug;Lee, Kil-Seong;Park, Young-Jin
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.4
    • /
    • pp.337-351
    • /
    • 2010
  • There is a growing dissatisfaction with use of conventional statistical methods for the prediction of extreme events. Conventional methodology for modeling extreme event consists of adopting an asymptotic model to describe stochastic variation. However asymptotically motivated models remain the centerpiece of our modeling strategy, since without such an asymptotic basis, models have no rational for extrapolation beyond the level of observed data. Also, this asymptotic models ignored or overestimate the uncertainty and finally decrease the reliability of uncertainty. Therefore this article provide the research example of the extreme rainfall event and the methodology to reduce the uncertainty. In this study, the Bayesian MCMC (Bayesian Markov Chain Monte Carlo) and the MLE (Maximum Likelihood Estimation) methods using a quadratic approximation are applied to perform the at-site rainfall frequency analysis. Especially, the GEV distribution and Gumbel distribution which frequently used distribution in the fields of rainfall frequency distribution are used and compared. Also, the results of two distribution are analyzed and compared in the aspect of uncertainty.

Reliability Analysis for the Estimation of Frequency-Based Rainfall (확률강우량 산정방법의 신뢰도 분석)

  • Hong, Chang-Sun;Wone, Seog-Yeon;Ahn, Jae-Hyun;Ahn, Won-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.1 no.3 s.3
    • /
    • pp.111-122
    • /
    • 2001
  • A reliability analysis is conducted on the process in estimating frequency rainfalls. 39 year of annual maximum data in Seoul station are collected to analyze the reliability in the frequency analysis technique. Frequency analysis is carried out for the nine types of distribution function and three types of parameter estimation method which are currently used in Korea. Reliability Analysis is conducted for the frequency rainfalls determined by 3 types(maximum, median, selected) of method to select the adequate rainfall. Computed rainfalls of each duration and return period are standardized to find the distribution of the frequency rainfall. It shows that the resulting rainfall distribution fairly represents the normal distribution. Coefficient of variation of 0.0456 is computed to be used in estimating the reliability based design rainfall.

  • PDF

Comparative Analysis of regional and at-site analysis for the design rainfall by Log-Pearson Type III and GEV Distribution (Log-Pearson Type III 및 GEV분포모형에 의한 강우의 지점 및 지역빈도 비교분석)

  • Ryoo, Kyong-Sik;Lee, Soon-Hyuk
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.443-446
    • /
    • 2003
  • This study was conducted to draw design rainfall for the regional design rainfall derived by the optimal distribution and method of frequency analysis. The design rainfalls were calculated by the regional and at-site analysis for Log-Pearson type III and GEV distributions and were compared with Relative efficiency(RE) which is ratio of Relative root-mean-square error(RRMSE) by the regional and at-site analysis for Log-Pearson type III and GEV distributions. Consequently, optimal design rainfalls following the regions and consecutive durations were derived by the regional frequency analysis for GEV distribution and design rainfall maps were drawn by GIS techniques.

  • PDF

Design Flood Estimation using Historical Rainfall Events and Storage Function Model in Large River Basins (과거강우사상과 저류함수모형을 이용한 대유역 계획홍수량 추정)

  • Youn, Jong-Woo;Lee, Dong-Ryul;Ahn, Won-Sik;Rim, Hae-Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3B
    • /
    • pp.269-279
    • /
    • 2009
  • The design flood estimation in a large river basin has a lot of uncertainties in areal reduction factors, time-spatial rainfall distribution, and parameters of rainfall-runoff model. The use of historical concurrent rainfall events for estimating design flood would reduce the uncertainties. This study presents a procedure for estimating design floods using historical rainfall events and storage function model. The design rainfall and time-spatial distribution were determined through analyzing concurrent rainfall events, and the design floods were estimated using storage function model with a non-linear hydrology response. To evaluate the applicability of the procedure of this study, the estimated floods were compared to results of frequency analysis of flood data. Both floods gave very similar results. It shows the applicability of the procedure presented in this study for estimating design floods in practices.

Case Study on the Physical Characteristics of Precipitation using 2D-Video Distrometer (2D-Video Distrometer를 이용한 강수의 물리적 특성에 관한 사례연구)

  • Park, Jong-Kil;Cheon, Eun-Ji;Jung, Woo-Sik
    • Journal of Environmental Science International
    • /
    • v.25 no.3
    • /
    • pp.345-359
    • /
    • 2016
  • This study analyze the synoptic meteorological cause of rainfall, rainfall intensity, drop size distribution(DSD), fall velocity and oblateness measured by the 2D-Video distrometer(2DVD) by comparing two cases which are heavy rainfall event case and a case that is not classified as heavy rainfall but having more than $30mm\;h^{-1}$ rainrate in July, 2014 at Gimhae region. As a results; Over the high pressure edge area where strong upward motion exists, the convective rain type occurred and near the changma front, convective and frontal rainfall combined rain type occurred. Therefore, rainrate varies based on the synoptic meteorological condition. The most rain drop distribution appeared in the raindrops with diameters between 0.4 mm and 0.6 mm and large particles appeared for the convective rain type since strong upward motion provide favorable conditions for the drops to grow by colliding and merging so the drop size distribution varies based on the location or rainfall types. The rainfall phases is mainly rain and as the diameter of the raindrop increase the fall velocity increase and oblateness decrease. The equation proposed based on the 2DVD tends to underestimated both fall velocity and oblateness compared with observation. Since these varies based on the rainfall characteristics of the observation location, standard equation for fall velocity and oblateness fit for Gimhae area can be developed by continuous observation and data collection hereafter.

A Case Study for the Determination of Time Distribution of Frequency Based Rainfall (확률강우의 적정시간분포 결정에 관한 연구)

  • Lee, Jeong Ki;Kim, Hung Soo;Kang, In Joo
    • Journal of Wetlands Research
    • /
    • v.6 no.3
    • /
    • pp.71-81
    • /
    • 2004
  • In recent, the heavy rainfall is frequently occurred and the damage tends to be increased. So, more careful hydrologic analysis is required for the designs of the hydraulic or disaster prevention structures. The time distribution of a rainfall is one of the important factors for the estimation of peak flow in hydrologic and hydraulic designs. This study is to suggest a methodology for the estimation of a rainfall time distribution which can reflect the meteorologic and topographical characteristics of Daejeon area. We collect the 34 years' rainfall data recorded in the range of 1969 to 2002 for Daejeon area and we performed the rainfall analysis with the data in between May and October of each year. According to the Huff method, the collected data corresponds to the first quartile which the rainfall is concentrated in the primary stage but the suggested method shows the different rainfall distribution with the Huff method in time. The reason is that the Huff method determines the quartile in each storm event while the suggested one determines it by estimating the dimensionless distribution of rainfall in duration after the accumulation of rainfall in time. The rainfall distributions estimated by two methodologies were applied to the Gabcheon basin in Daejeon area for the estimation of flood flow. Here we use the SCS method for the effective rainfall and unit hydrograph for the flood discharge. As the results, the peak flow for 24-hour of 100-year frequency was estimated as a $3421.20m^3/sec$ by the Huff method and $3493.38m^3/sec$ by the suggested one. We can see the difference of $72.18m^3/sec$ in between two methods and thus we may carefully determine the rainfall time distribution and compute the effective rainfall for the estimation of the peak flow.

  • PDF

Development of Daily Rainfall Simulation Model Using Piecewise Kernel-Pareto Continuous Distribution (불연속 Kernel-Pareto 분포를 이용한 일강수량 모의 기법 개발)

  • Kwon, Hyun-Han;So, Byung Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3B
    • /
    • pp.277-284
    • /
    • 2011
  • The limitations of existing Markov chain model for reproducing extreme rainfalls are a known problem, and the problems have increased the uncertainties in establishing water resources plans. Especially, it is very difficult to secure reliability of water resources structures because the design rainfall through the existing Markov chain model are significantly underestimated. In this regard, aims of this study were to develop a new daily rainfall simulation model which is able to reproduce both mean and high order moments such as variance and skewness using a piecewise Kernel-Pareto distribution. The proposed methods were applied to summer and fall season rainfall at three stations in Han river watershed in Korea. The proposed Kernel-Pareto distribution based Markov chain model has been shown to perform well at reproducing most of statistics such as mean, standard deviation and skewness while the existing Gamma distribution based Markov chain model generally fails to reproduce high order moments. It was also confirmed that the proposed model can more effectively reproduce low order moments such as mean and median as well as underlying distribution of daily rainfall series by modeling extreme rainfall separately.

Statistical significance test of polynomial regression equation for Huff's quartile method of design rainfall (설계강우량의 Huff 4분위 방법 다항회귀식에 대한 유의성 검정)

  • Park, Jinhee;Lee, Jaejoon;Lee, Sungho
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.3
    • /
    • pp.263-272
    • /
    • 2018
  • For the design of hydraulic structures, the design flood discharge corresponding to a specific frequency is generally used by using the design storm calculated according to the rainfall-runoff relationship. In the past, empirical equations such as rational equations were used to calculate the peak flow rate. However, as the duration of rainfall is prolonged, the outflow patterns are different from the actual events, so the accuracy of the temporal distribution of the probability rainfall becomes important. In the present work, Huff's quartile method is used for the temporal distribution of rainfall, and the third quartile is generally used. The regression equation for Huff's quadratic curve applies a sixth order polynomial equation because of its high accuracy throughout the duration of rainfall. However, in statistical modeling, the regression equation needs to be concise in accordance with the principle of simplicity, and it is necessary to determine the regression coefficient based on the statistical significance level. Therefore, in this study, the statistical significance test for regression equation for temporal distribution of the Huff's quartile method, which is used as the temporal distribution method of design rainfall, is conducted for 69 rainfall observation stations under the jurisdiction of the Korea Meteorological Administration. It is statistically significant that the regression equation of the Huff's quartile method can be considered only up to the 4th order polynomial equation, as the regression coefficient is significant in most of the 69 rainfall observation stations.