• Title/Summary/Keyword: Distribution Journal

Search Result 56,942, Processing Time 0.07 seconds

Distributed Energy System Connection Limit Capacity Increase Technology Using System Flexible Resources (계통유연자원을 활용한 분산에너지 계통접속 한계용량 증대 기술)

  • Jeong Min Park
    • Journal of Integrative Natural Science
    • /
    • v.16 no.4
    • /
    • pp.139-145
    • /
    • 2023
  • Due to changes in the distribution system and increased demand for renewable energy, interest in technology to increase the limit capacity of distributed energy grid connection using grid flexible resources is also increasing. Recently, the distribution system system is changing due to the increase in distributed power from renewable energy, and as a result, problems with the limited capacity of the distribution system, such as waiting for renewable energy to connect and increased overload, are occurring. According to the power generation facility status report provided by the Korea Power Exchange, of the total power generation capacity of 134,020 MW as of 2021, power generation capacity through new and renewable energy facilities is 24,855 MW, accounting for approximately 19%, and among them, power generation through solar power accounts for a total portion of the total. It was analyzed that the proportion of solar power generation facilities was high, accounting for 75%. In the future, the proportion of new and renewable energy power generation facilities is expected to increase, and accordingly, an efficient operation plan for the distribution system is needed. Advanced country-type NWAs that can integrate the operation and management of load characteristics for each line of the distribution system, power distribution, regional characteristics, and economic feasibility of distributed power in order to improve distribution network use efficiency without expanding distribution facilities due to the expansion of renewable energy. An integrated operating system is needed. In this study, in order to improve the efficiency of distribution network use without expanding distribution facilities due to the expansion of renewable energy, we developed a method that can integrate the operation and management of load characteristics for each line of the distribution system, power distribution, regional characteristics, and economic feasibility of distributed power. We want to develop an integrated operation system for NWAs similar to that of advanced countries.

Lightning Overvoltage Analysis According to Interval of Arrester and Overhead Grounding Wire in DC Distribution System (직류배전시스템에서 피뢰기 및 가공지선 접지간격 변경에 따른 뇌과전압 해석)

  • An, Chun-Yong;Lee, Jong-Beom;Kim, Yong-Kap
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.4
    • /
    • pp.474-481
    • /
    • 2013
  • It is anticipated that AC distribution system can be replaced by DC distribution system in the near future because of the operation of various distributed source or microgrid system. However DC distribution system replacing 22.9kV AC distribution line is not sufficiently studied still. This paper describes lightning overvoltage analysis among many research fields should be studied to realize DC overhead distribution systems. DC distribution system is modeled using EMTP and overvoltage is analyzed according to interval of arrestor location, earth interval of overhead grounding wire and grounding resistance. It is evaluated that analysis results can be effectively used to design of future DC distribution system.

The Study on Economic Evaluation for Investment Cost When the Distribution Automation System is Applied (배전자동화 투자비대 경제적 효과분석에 관한 연구)

  • 하복남;한용희;한병성;이흥호
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.7
    • /
    • pp.407-413
    • /
    • 2003
  • Before expanding of distribution automation application to distribution network, we must examine whether there are economical effect. Investment expense for distribution automation can be divided into facility investment expense, maintenance expense, communication expense, investment expense etc. Effect of distribution automation can classify by effect that can convert into money and effect that can not convert into money. Representative effect is outage time decrease effect, distribution line loss decrease effect, main transformer upload effect, distribution line upload effect, work environment improvement effect of lineman and so on. This paper studied economical effect and break-even Point for investment expense by using data that acquire in KEPCO's distribution network.

M/PH/1 QUEUE WITH DETERMINISTIC IMPATIENCE TIME

  • Kim, Jerim;Kim, Jeongsim
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.2
    • /
    • pp.383-396
    • /
    • 2013
  • We consider an M/PH/1 queue with deterministic impatience time. An exact analytical expression for the stationary distribution of the workload is derived. By modifying the workload process and using Markovian structure of the phase-type distribution for service times, we are able to construct a new Markov process. The stationary distribution of the new Markov process allows us to find the stationary distribution of the workload. By using the stationary distribution of the workload, we obtain performance measures such as the loss probability, the waiting time distribution and the queue size distribution.

A Distribution Automation System Simulator for Training and Research

  • Gupta R. P.;Srivastava S. C.
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.2
    • /
    • pp.159-170
    • /
    • 2005
  • This paper presents the design and development of a scaled down physical model for power Distribution Automation (DA) system simulation. The developed DA system simulator is useful in providing hands-on experience to utility engineers / managers to familiarize with the DA system and gain confidence in managing the power distribution system from the computer aided distribution control center. The distribution automation system simulator can be effectively used to carry out further research work in this area. This also helps the undergraduate and graduate students to understands the power distribution automation technology in the laboratory environment. The developed DA simulator has become an integral part of a distribution automation lab in the Electrical Engineering Department at Indian Institute of Technology Kanpur in India.

A Mathematical model to estimate the wind power using three parameter Weibull distribution

  • Seshaiah, C.V.;Sukkiramathi, K.
    • Wind and Structures
    • /
    • v.22 no.4
    • /
    • pp.393-408
    • /
    • 2016
  • Weibull distribution is a suitable distribution to use in modeling the life time data. It has been found to be a exact fit for the empirical distribution of the wind speed measurement samples. In brief this paper consist of important properties and characters of Weibull distribution. Also we discuss the application of Weibull distribution to wind speed measurements and derive an expression for the probability distribution of the power produced by a wind turbine at a fixed location, so that the modeling problem reduces to collecting data to estimate the three parameters of the Weibull distribution using Maximum likelihood Method.

Optimal Power Distribution for an Electric Vehicle with Front In-line Rear In-wheel Motors (전륜 인라인 후륜 인휠 모터 적용 전기자동차의 최적 동력 분배)

  • Kim, Jeongmin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.76-82
    • /
    • 2014
  • In this paper, an optimal power distribution algorithm is proposed for the small electric vehicle with front in-line and rear in-wheel motors. First, it is assumed that the vehicle driving torque and velocity are given conditions. And, an optimal problem is defined that finding the front and rear motor torques which minimizes the battery power. From the above optimization problem, the optimized front-rear motor torque distribution map is obtained. And, the vehicle simulations are performed to verify the performance of the optimal power distribution algorithm which is proposed in this study. The simulations are performed based on the federal urban driving schedule for two cases which are constant ratio power distribution, and optimal power distribution. From the simulation results, it is found that the optimal power distribution shows the 6.3% smaller battery energy consumption than the constant ratio power distribution.

A Bayesian Approach for Accelerated Failure Time Model with Skewed Normal Error

  • Kim, Chansoo
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.2
    • /
    • pp.268-275
    • /
    • 2003
  • We consider the Bayesian accelerated failure time model. The error distribution is assigned a skewed normal distribution which is including normal distribution. For noninformative priors of regression coefficients, we show the propriety of posterior distribution. A Markov Chain Monte Carlo algorithm(i.e., Gibbs Sampler) is used to obtain a predictive distribution for a future observation and Bayes estimates of regression coefficients.

Estimations in a Skewed Double Weibull Distribution

  • Son, Hee-Ju;Woo, Jung-Soo
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.5
    • /
    • pp.859-870
    • /
    • 2009
  • We obtain a skewed double Weibull distribution by a double Weibull distribution, and evaluate its coefficient of skewness. And we obtain the approximate maximum likelihood estimator(AML) and moment estimator of skew parameter in the skewed double Weibull distribution, and hence compare simulated mean squared errors(MSE) of those estimators. We compare simulated MSE of two proposed reliability estimators in two independent skewed double Weibull distributions each with different skew parameters. Finally we introduce a skewed double Weibull distribution generated by a uniform kernel.

A Study on the present of the distribution industry and the course that the Government & enterprise should take for strengthening competive power. (국내 유통산업의 현황과 경쟁력 강화를 위한 정부와 기업이 나아가야 할 방향에 관한 연구)

  • 이성일
    • Culinary science and hospitality research
    • /
    • v.6 no.1
    • /
    • pp.253-274
    • /
    • 2000
  • This report deals with what the distribution industry is and the actual condition and keynote of the domestic distribution industry. Now, it is difficult compare with the domestic distribution industryand other advanced nation. because of inferior enviroment and given circumstance such as. Open market pressure. We will study about realities and weakness of the domestic distribution industry, also check how to cope with, especially the Government and enterprise, these difficulties for the development of the domestic distribution industry.

  • PDF