• Title/Summary/Keyword: Distribution Journal

Search Result 56,943, Processing Time 0.07 seconds

Understanding the Asymptotic Convergence of Domain of Attraction in Extreme Value Distribution for Establishing Baseline Distribution in Statistical Damage Assessment of a Structure (통계적 구조물 손상진단에서 기저분포 구성을 위한 극치분포의 점근적 수렴성 이해)

  • Kang, Joo-Sung;Park, Hyun-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.2 s.54
    • /
    • pp.231-242
    • /
    • 2009
  • The baseline distribution of a structure represents the statistical distribution of dynamic response feature from the healthy state of the structure. Generally, damage-sensitive dynamic response feature of a structure manifest themselves near the tail of a baseline statistical distribution. In this regard, some researchers have paid attention to extreme value distribution for modeling the tail of a baseline distribution. However, few researches have been conducted to theoretically understand the extreme value distribution from a perspective of statistical damage assessment. This study investigates the asymptotic convergence of domain of attraction in extreme value distribution through parameter estimation, which is needed for reliable statistical damage assessment. In particular, the asymptotic convergence of a domain of attraction is quantified with respect to the sample size out of which each extreme value is extracted. The effect of the sample size on false positive alarms in statistical damage assessment is quantitatively investigated as well. The validity of the proposed method is demonstrated through numerically simulated acceleration data on a two span continuous truss bridge.

MULTIVARIATE DISTRIBUTIONS WITH SELFDECOMPOSABLE PROJECTIONS

  • Sato, Ken-Iti
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.783-791
    • /
    • 1998
  • A random vector X on $R^{d}$ with the following properties is constructed: the distribution of X is infinitely divisible and not selfdecomposable, but every linear transformation of X to a lower-dimensional space has a selfdecomposable distribution.

  • PDF

Determination of the Distribution of the Preisach Density Function With Optimization Algorithm

  • Hong Sun-Ki;Koh Chang Seop
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.3
    • /
    • pp.258-261
    • /
    • 2005
  • The Preisach model needs a distribution function or Everett function to simulate the hysteresis phenomena. To obtain these functions, many experimental data obtained from the first order transition curves are usually required. In this paper, a simple procedure to determine the Preisach density function using the Gaussian distribution function and genetic algorithm is proposed. The Preisach density function for the interaction field axis is known to have Gaussian distribution. To determine the density and distribution, genetic algorithm is adopted to decide the Gaussian parameters. With this method, just basic data like the initial magnetization curve or saturation curves are enough to get the agreeable density function. The results are compared with experimental data and we got good agreements comparing the simulation results with the experiment ones.

Aspects of Dependence in Lomax Distribution

  • Asadian, N.;Amini, M.;Bozorgnia, A.
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.2
    • /
    • pp.193-204
    • /
    • 2008
  • In this paper we study some positive dependence concepts, introduced by Caperaa and Genest (1990) and Shaked (1977b), for bivariate lomax distribution. In particular, we obtain some measures of association for this distribution and derive the tail-dependence coefficients by using copula function. We also compare Spearman's $\rho_s$ with Kendall's $\tau$ for bivariate lomax distribution.

Bayesian Estimators Using Record Statistics of Exponentiated Inverse Weibull Distribution

  • Kim, Yong-Ku;Seo, Jung-In;Kang, Suk-Bok
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.3
    • /
    • pp.479-493
    • /
    • 2012
  • The inverse Weibull distribution(IWD) is a complementary Weibull distribution and plays an important role in many application areas. In this paper, we develop a Bayesian estimator in the context of record statistics values from the exponentiated inverse Weibull distribution(EIWD). We obtained Bayesian estimators through the squared error loss function (quadratic loss) and LINEX loss function. This is done with respect to the conjugate priors for shape and scale parameters. The results may be of interest especially when only record values are stored.

A Goodness-of-Fit Test for Multivariate Normal Distribution Using Modified Squared Distance

  • Yim, Mi-Hong;Park, Hyun-Jung;Kim, Joo-Han
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.4
    • /
    • pp.607-617
    • /
    • 2012
  • The goodness-of-fit test for multivariate normal distribution is important because most multivariate statistical methods are based on the assumption of multivariate normality. We propose goodness-of-fit test statistics for multivariate normality based on the modified squared distance. The empirical percentage points of the null distribution of the proposed statistics are presented via numerical simulations. We compare performance of several test statistics through a Monte Carlo simulation.

Non-Gaussian analysis methods for planing craft motion

  • Somayajula, Abhilash;Falzarano, Jeffrey M.
    • Ocean Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.293-308
    • /
    • 2014
  • Unlike the traditional displacement type vessels, the high speed planing crafts are supported by the lift forces which are highly non-linear. This non-linear phenomenon causes their motions in an irregular seaway to be non-Gaussian. In general, it may not be possible to express the probability distribution of such processes by an analytical formula. Also the process might not be stationary or ergodic in which case the statistical behavior of the motion to be constantly changing with time. Therefore the extreme values of such a process can no longer be calculated using the analytical formulae applicable to Gaussian processes. Since closed form analytical solutions do not exist, recourse is taken to fitting a distribution to the data and estimating the statistical properties of the process from this fitted probability distribution. The peaks over threshold analysis and fitting of the Generalized Pareto Distribution are explored in this paper as an alternative to Weibull, Generalized Gamma and Rayleigh distributions in predicting the short term extreme value of a random process.