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MULTIVARIATE DISTRIBUTIONS WITH
SELFDECOMPOSABLE PROJECTIONS

KEN-ITI SATO

ABSTRACT. A random vector X on R¢ with the following properties
is constructed: the distribution of X is infinitely divisible and not
selfdecomposable, but every linear transformation of X to a lower-
dimensional space has a selfdecomposable distribution.

1. Results and background facts

Denote the characteristic function of a distribution x on the d-dimen-
sional Euclidean space R? by [i(z), z € R% A distribution x on R? is
called selfdecomposable (or of class L) if, for any b € (0,1), there is a
distribution p, such that

(L1) A(z) = f(2)Au(2), z€R"

Denote the class of selfdecomposable distributions, the class of stable
distributions, and the class of infinitely divisible distributions on R? by
L(R%), S(R?), and I(R?), respectively. Then

(1.2) S(RY) ¢ L(RY) < I(RY).

Characterization of these classes in the theory of limit distributions for
sums of independent random variables is well-known. See [4, 13]. A
random variable with selfdecomposable distribution is also called selfde-
composable.

We identify the Euclidean spaces with the collections of real column
vectors. Thus a linear transformation from R? to R! is represented by an
! x d matrix. The distribution of a random variable X = (Xj)i<j<q on
R is denoted by Px. If a random variable X on R? is selfdecomposable,
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then, for any | x d matrix A, AX is selfdecomposable on R!. This fact
is easy to see, because

Pax(2) = Px(A'z), zeR.

Here we denote by A’ the transpose of the matrix A. We shall show that
the converse in some sense of this fact does not hold. That is, we shall
show the following.

THEOREM 1.1. Let d > 2. There is a random variable on R? satisfy-
ing the following three conditions:
(a) Py is infinitely divisible.
(b) Px is not selfdecomposable.
(c) For anyl < d—1 and any ! x d matrix A, P,y is selfdecomposable.

The condition (c) implies that, for any projector A (that is d x d matrix
satisfying A? = A) with the dimension of the range being < d — 1, AX
is selfdecomposable.

The background facts are as follows. If a random variable X =
(X;)1<j<a on R? is Gaussian, stable, or infinitely divisible, respectively,
then, for any linear transformation A, AX is Gaussian, stable, or in-
finitely divisible, respectively. It is easy to see that a random variable
X = (X;)1<j<a on R? is Gaussian if and only if every linear combination

Z?:l a;X; with a,...,aq € R is Gaussian.
Zy,
1. (Lévy [6]) Let Z; = (Z“)’ k=1,...,n, are independent random
k2

variables on R?, each Gaussian distributed with mean (g) and covariance

((1](1)) and let X1 = Z;cl:l Zk12, X2 = ZZ:I Zk22, X3 = ZZ:l ZkIZk2-
Then the random variable X = (X;);<;j<3 on R? is not infinitely divisible,
while (ﬁ;), (ﬁz), and (;{;) are infinitely divisible on R2.

2. (Dwass and Teicher [2]) Let X = (X})i<;j<s be the same as above.
Then, any linear combination Z?=1 a;X; is infinitely divisible.

3. (Ibragimov [5] for d = 2 and Linnik and Ostrovskii [7] for general
d) There is a random variable X = (X;)1<;<q4 on R? such that X is not
infinitely divisible, but every linear combination Z?:l a;X; is infinitely
divisible. Giné and Hahn [3] remarks that the X of Linnik and Ostrovskii
[7] can be chosen so that every (d — 1)-dimensional projection of X is
infinitely divisible.
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4. A random variable X = (X)1<j<q on R? is strictly stable if and
only if every linear combination Z?:l a;X; is strictly stable.

5. A random variable X = (Xj)i<j<q on R? is stable with index
a € [1,2] if and only if every linear combination Z?zl a;X; is stable
with index in [1, 2].

The two results above are by Dudley and Kanter [1] and Samorodnit-
sky and Taqqu [10]. See the book [11] of Samorodnitsky and Taqqu.

6. (Marcus [9]. Proof improved by Samotij and Zak [12]) For any
a € (0,1) there is a random variable X = (X;)1<j<o on R? such that
X is not stable but any linear combination a;X; + a3 X, is stable with
index a.

7. (Giné and Hahn [3]) Let d > 2 and let X be a random variable on
R?. If every 2-dimensional projection of X is infinitely divisible and if
every linear combination ijl a;X; is stable, then X is stable.

Qur Theorem 1.1 shows that the statement 7 with “stable” replaced
by “selfdecomposable” is false.

In the case of finite-dimensional distributions of processes with inde-
pendent increments, a related problem is treated in [8].

2. Preliminaries on selfdecomposability

Denote the Euclidean norm of z = (z;)1¢j<4 € R? by |z|=(31_, 7;%) V2,
The o-algebra of Borel sets in R? is B(R?). The indicator function of a
set B is 1p(z). For a signed measure p defined on B(R?), the measure
of total variation of p is denoted by |p|. We use the following facts on
selfdecomposability of infinitely divisible distributions.

PRrROPOSITION 2.1. Let d > 1. If pu is a selfdecomposable distribution
on RY, then there is a unique measure p on R? satisfying

(2.1)  p({0}) =0 and |z|?p(dx) +/ log |z|p(dz) < oo

Jr]<2 lz|>2

such that the Lévy measure v of u is expressed as

(2.2) v(B) = /Rd p(dzx) /000 1p(e7tz)dt for any B € B(R?).
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Conversely, if p is a measure on R? satisfying (2.1), then the measure v
defined by (2.2) satisfies

(2.3) v({0}) =0 and /Rd(l Alz|®)v(dz) < oo

and is the Lévy measure of a selfdecomposable distribution on R

This is reformulation in Sato and Yamazato [14] of the result of Ur-
banik [15].

PROPOSITION 2.2. Let d > 1 and let 4 be an infinitely divisible dis-
tribution on R? with Lévy measure v. Suppose that there is a signed
measure p on R? such that (2.1) is satisfied with |p| in place of p and
that v is represented by (2.2) with p. Then p is uniquely determined by
" v. If p(B) < 0 for some B € B(RY), then p is not selfdecomposable.

Proof. To prove the uniqueness of p, suppose that signed measures
p1 and p, serve as p to express the Lévy measure v. For k = 1,2, let
px = pi — pr be the Jordan decomposition of pi, where p{ and p; are
the upper and lower variations of p, respectively. Then (2.1) holds with
pi and p; in place of p. Define

vi(B) = /Rd pi (dz) /Ooo 1p(e~'z)dt for B € B(R?)

and similarly v by p; in place of p;. Then we have v = v — 1] =
vy — vy . Define v = v +v; = vj + vy . Consider an infinitely divisible
distribution with Lévy measure v. Then ¥ has an expression similar to
(2.2) using pf +p; and p; + p7. Hence, by the uniqueness in Proposition
2.1, we have pi + p; = p3 + p7. Therefore p; = ps.

Suppose that p is selfdecomposable. Then, by Proposition 2.1, the
Lévy measure v of u has the representation (2.2) by a measure. It follows
from the uniqueness just proved that, in this case, our signed measure
p is actually a measure. Hence the last sentence in our proposition is
true. a

3. Construction

Let us construct an infinitely divisible distribution on R? such that
the random variable that has this distribution satisfies the requirements
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of Theorem 1.1. Let D; = {z € R%: 1 < [z| < 2} and D, = {z €
R?: |z} < a} with 0 <a < 1. Let

(31) p(d.’l:) = (1D1 (.’IZ) - lez(.’II))dﬂI

with 0 < b < 1. This is a signed measure absolutely continuous with
respect to the Lebesgue measure. Define v by (2.2) using this signed
measure p. Then, we can prove the following.

LEMMA 3.1. The signed measure v just defined is in fact a measure
on R4

LEMMA 3.2. Let A be anlxd matrix withl < d—1. Then the signed
measure p, defined by

(3.2) pa(B) = p({x e R?: Az € B}) for B € B(RY)
is in fact a measure on R

These two lemmas yield the following proposition, which shows The-
orem 1.1.

PROPOSITION 3.3. Let v be defined as above. If u is an infinitely
divisible distribution on R% whose Lévy measure coincides with v, then
the random variable X on R¢ with distribution p satisfies (a), (b), and
(c) in Theorem 1.1.

Proof. Notice that v is a measure by Lemma 3.1. Since |p| satisfies
(2.1), v satisfies v({0}) = 0 and [(1A|z|*)v(dz) < co. Hence there is an
infinitely divisible distribution x on R? having v as its Lévy measure. We
choose the Gaussian part of p arbitrarily. Then p is not selfdecomposable
by Proposition 2.2. Let X be a random variable on R? with distribution
p. Then, for any | x d matrix A, AX is infinitely divisible on R and its
Lévy measure v, is such that v4({0}) = 0 and

va(B) = v({x € R%: Az € B}) for B € B(R'\ {0}).
We have

[¢.9]
va(B) = pA(da:)/ 1g(e”tz)dt for B € B(R'\ {0}).
R4\ {0} 0
If ] < d -1, then, using Lemma 3.2, we see that p, is a measure and it
satisfies
|z|2pa(dz) +/ log |z|pa(dz) < 0.
z]<2 lz|>2
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Consequently, by Proposition 2.1, AX is selfdecomposable if [ < d —
1. O

Proof of Lemma 3.1. Denote the Lebesgue measure on R¢ by ).
Assume that a = b = 1. It is enough to prove the lemma in this case.
We have, for B € B(R?),

v(B) = /0 " (M€ B 1 Dy) — A(e'B N Dy))dt.

Hence v is absolutely continuous with respect to A;. Since p is rota-
tion invariant, so is v. Thus, v has a rotation invariant density, that is,
v(dz) = g(|z|)dz with a Borel measurable function g on [0, 00). There-
fore, in order to prove that v > 0, it is enough to show

(3.3) / v(de) >0 for 0 < ry <my < o00.
ni<|z{<r

Let ¢q be the surface measure of the unit sphere in R%. Let

(3.4) fo(T) = 1(1’2](7‘) - 1(0,1](7‘).

We have

/ v(dz) = / p(dz) / 1 {1og(jzl /r2) <t<log(|zl/m)} B
T1<|$l$7‘2 Rd 0

=c4 /0c>o fo(r)rd‘l((OV log ;T;) - (O V log r%))dr.

Denote the last integral by I. Then
" d-1 r * d-17., 72
(3.5) I= fo(r)r® " log —dr + fo(r)r® " log —dr.
- ™ ™ ™

Let us show that I > 0 for 0 < r; < 7o < 00. It is enough to consider
the following four cases. 1: 17 > 1. 2: 1y <719 < 1. 3: r; <1 and
1<ry<2.4: 7 <1andr >2

Case 1. The negative term in (3.4) is irrelevant. Hence I > 0.

Case 2. Noticing that
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we have, from (3.5),

T 1 2
I= —/ ri-1log Ldr — / riog Zdr + / i1 log 22 dr
. 1 r 1 1

1 T2 1

T2/T1 1/n Ty 2/ry -
= [—/ 54 log sds — / 5% llog =ds + / 541 log ——ds] .
1 r 1

2/71 1 /m 1
Hence,

1/m 2/r,
(3.6) I=r [—/ 5% llog (s A Q)ds + / s 1log (s A 2) ds}
1 ™ 1/m ™

Since the function s?!log(s A 2) of s > 1 is increasing and nonnegative,
this shows that I 21 0. ,
Case 3. I = — frf r41log Ldr + f1;2 r¢=1log Ldr+ [ r4=1log Zdr.
Case 4. I = — [ 7% 'log Ldr + [ log Ldr.
Hence, in Cases 3 and 4, we get the same expression (3.6). It follows

that I > 0, completing the proof. a

Proof of Lemma 3.2. Again we assume that a = b = 1. It suffices to
prove the lemma in this case. Let A be an | X d matrix with [ < d — 1.
We can choose v(V) € R? such that v® # 0 and Av®™ = 0. Then
choose v@,...,v@ € R? in such a way that {v® ... v@} is a linearly
independent system. Let v® = (vj1)i<jca- Any = = (T;)1<j<a € R? is
expressed as = = Y v_, yv® with some y = (y;)1cj<a € R?. That is,
T; = ZZZI vy for 1 € j < d. For any B € B(RY), Az € B is equivalent
to Y1 ,yrAv® € B. Let

f(z) = 1p,(z) = 1p,(=) = 1aq(lz*) — Lon(lzl?)-

pa(B) = /{ g, FE

o0
:C/ dy2"'d?/d/ f(x)dyh
{Zhey wAv®eB} -

where c is the absolute value of the determinant of (vjt). In order to
show that p4(B) > 0 for any B, it is enough to prove that

(37) [ aalieP) - teu(i=P)dun 2 0

00

Then
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for every fixed s, ..., ys. Notice that
d

i d
|z|? = Z(Z 'Ujkyk)2 = Z(P]zﬁz + 2p;g;€ + ;%)

j=1 k=1 j=1

where § =y, p; = vj1, and ¢; = ZZ:? v;xYx. Hence

d d d
o = PE€ +2RE+Q with P=) p? Q=) ¢, R=) pig

i=1 =1 i=1

We have P > 0, since (v;x) is an invertible matrix. Let
J = / (1,4(PE + 2RE + Q) — 1o (PE* + 2RE + Q) d€.

Then (3.7) is equivalent to that J > 0. If the equation PE*+2RE+Q =1
does not have two real roots, then clearly J > 0. Suppose that the
equation P¢? + 2R¢ + @ = 1 has two real roots a; < ay. Then, the
equation P¢? + 2R{ + Q = 4 has two real roots ; < 3, and we have
b1 < og < ag < 2. Thus

J> (g =)+ (B — ) — (g —y) = B — B — 2(a2 — v1).

Since ap—a; = 24/R2 — P(Q — 1)/P and 5;—f1 = 24/R? — P(Q — 4)/P,
the nonnegativity of J follows if \/R? — P(Q — 4) > 24/R? ~ P(Q — 1).
This is equivalent to PQ > R2. This inequality is true, because this is
the Cauchy-Schwarz. Hence J > 0. O

We remark that Ibragimov [5] and Linnik and Ostrovskii [7] both use
the argument which we can call the method of “signed Lévy measure”, in
order to show that a distribution is not infinitely divisible. The method
is explained in Gnedenko and Kolmogorov [4], p.81. Our proof of the
theorem is suggested by this method and the p in (3.1) is the signed
measure employed in [7].

ADDED IN PROOF. O. E. Barndorff-Nielsen drew the author’s atten-
tion to the relevance of a paper by D. N. Shanbhag and M. Sreeharai
(An extension of Goldie’s result and further results in infinite divisibil-
ity, Zeit. Wahrsch. Verw. Gebiete 47 (1979), 19-25). They remark that
a random variable on R? with some hyperbolic distribution is infinitely
divisible and not selfdecomposable, but every linear combination of its
components is selfdecomposable. The author stresses that the construc-
tion in this paper would be of methodological interest and the random
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variable constructed has the stronger property (c). He thanks O. E.
Barndorff-Nielsen for his kind comments.
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