• Title/Summary/Keyword: Distributed optical fiber sensor

Search Result 70, Processing Time 0.023 seconds

Hydrogen Sensor Based on Palladium-Attached Fiber Bragg Grating

  • Lee, Sang-Mae;Sirkis, Jim-S.
    • Journal of the Optical Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.69-73
    • /
    • 1999
  • This paper demonstrated the performance of a palladium wire hydrogen sensor based on a fiber Bragg grating as a means of developing a quasi-distributed hydrogen sensor network capable of operating at cryogenic temperatures. The new approach employing a fiber Bragg grating based palladium hydrogen sensor described in this study is advantageous over other traditional hydrogen sensors because of the multiplexing capability of fiber Bragg gratings. The sensitivity of the hydrogen sensor at room temperature is approximately 2.5 times that of the hydrogen sensor at cryogenic temperatures.

Development of optical temperature distribution measurement system for Underground Power Transmission tunnel (지중선로의 분포 온도 측정 시스템 개발)

  • Lee, Keun-Yang;Song, Woo-Sung
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.766-768
    • /
    • 1998
  • Optical Temperature Distribution measurement System (OTDS) is completely different from conventional electric point sensor in that it uses the optical fiber itself as the sensor. This new concept in temperature measuring system requires only one fiber to be laid. The use of optical fiber also gives the advantage of small diameter, light weight, explosion resistance, and electromagnetic noise resistance. The OTDS is a sensor which is capable of making a precise measurement over a wide range of areas using only a single optical fiber. Since current temperature sensors, such as the thermocouple, are only used to measure temperaturea of point, they are almost impractical for measuring a wider range because of the extremely high cost. In comparision with current sensors, the optical fiber distributed temperature sensor can make much quicker and more precise measurements at a comparatively low cost.

  • PDF

Distributed Monitoring Technology using Fiber-Optic Embedded Sensor (광섬유 임베디드 센서 기반 분포 모니터링 기술)

  • Kim, Youngwoong;Kim, Jong-Yeol;Ryu, Gukbeen;Hwang, Young-Gwan;Kim, Hyun-Gil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.617-619
    • /
    • 2022
  • An embedded fiber-optic sensor was manufactured using 3D printing technology for distributed structural monitoring. Strain distribution of the embedded sensor was measured by the optical frequency domain reflectometry, and real-time data visualization for the embedded sensor model was demonstrated.

  • PDF

The study on the fiber optic sensor for the distributed temperature measurement (분포온도 계측을 위한 광파이버 온도센서 시스템에 관한 연구)

  • 이광진;최성구;노도환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1746-1749
    • /
    • 1997
  • A distributed optical fiber temperature sensor can continually monitor the measurand at every point along of its fiber length. It is based on OTDR technics which used extreamlly weak backward scattered light called Raman scattering. When the Pulsed high intensity laser light injected into the optical fiber there are several kind of backscattered light such as Rayleigh, Stokes, and anti-Stokes, etc. caused by impurities molecular vibrations. The temperature distribution is derived form the intensity ratio Raman scatted light-Stokes versus anti-Stokes-and the time function between light injection and signal detection. It is shown that the priniciple of distributed sensing, the system desing, and the result of experiments.

  • PDF

Strain Transmission Ratio of a Distributed Optical Fiber Sensor with a Coating Layer (코팅된 분포형 광섬유 센서의 변형률 전달률)

  • Yoon, S.Y.;Kown, I.B.;Yu, H.S.;Kim, E.
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.429-434
    • /
    • 2018
  • We investigate strain transmissions of a surface bonded distributed optical fiber sensor considering strain variation according to positions. We first derive a strain transmission ratio depending on a wavelength of a strain distribution of the host structure from an analysis model. The strain transmission ratio is compared with numerical results obtained from the finite element method using ABAQUS. We find that the analytical results agree well with the numerical results. The strain transmission ratio is a function of a wavelength, i.e. the strain transmission ratio decreases (increases) as the wavelength of the host strain decreases (increases). Therefore, if an arbitrary strain distribution containing various wavelengths is given to a host structure, a distorted strain distribution will be observed in the distributed optical fiber sensor compare to that of the host structure, because each wavelength shows different strain transmission ratio. The strain transmission ratio derived in this study will be useful for accurately identifying the host strain distribution based on the signal of a distributed optical fiber sensor.

Temperature Compensation of a Strain Sensing Signal from a Fiber Optic Brillouin Optical Time Domain Analysis Sensor

  • Kwon, Il-Bum;Kim, Chi-Yeop;Cho, Seok-Beom;Lee, Jung-Ju
    • Journal of the Optical Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.106-112
    • /
    • 2003
  • In order to do continuous health monitoring of large structures, it is necessary that the distributed sensing of strain and temperature of the structures be measured. So, we present the temperature compensation of a signal from a fiber optic BOTDA (Brillouin Optical Time Domain Analysis) sensor. A fiber optic BOTDA sensor has good performance of strain measurement. However, the signal of a fiber optic BOTDA sensor is influenced by strain and temperature. Therefore, we applied an optical fiber on the beam as follows: one part of the fiber, which is sensitive to the strain and the temperature, is bonded on the surface of the beam and another part of the fiber, which is only sensitive to the temperature, is located nearby the strain sensing fiber. Therefore, the strains can be determined from the strain sensing fiber while compensating for the temperature from the temperature sensing fiber. These measured strains were compared with the strains from electrical strain gages. After temperature compensation, it was concluded that the strains from the fiber optic BOTDA sensor had good coincidence with those values of the conventional electrical strain gages.

Experiment of Distributed Optical Fiber Sensor Using Spatially-Selective Brillouin Scattering (공간 선택적 브릴루앙 산란을 이용한 분포형 광섬유 센서의 실험)

  • Seo, Min-Sung;Yun, Seung-Chul;Hyun, Jin-Young;Park, Hee-Gap
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.3
    • /
    • pp.223-230
    • /
    • 2006
  • We demonstrate a distributed fiber sensor system based on spatially-selective Brillouin scattering, using a single laser diode as a light source whose optical frequency is directly modulated by the injection current. The pump and the counter-propagating probe lights, which are sinusoidally frequency-modulated, are superposed in the fiber so that stimulated Brillouin scattering takes places only at a specific location along the fiber. Brillouin gain peak position is controlled by varying the modulation frequency. Distributions of Brillouin shift frequency are measured for the case of concatenated optical fibers of two different kinds and also for the case of temperature distribution. The temperature coefficient of the Brillouin shift frequency is measured to be $1.33MHz/^{\circ}C$.

Measurement of Brillouin Backscattering for Distributed Temperature Sensor Applications

  • Kim, Su-Hwan;Kwon, Hyung-Woo;Kwon, Hyun-Ho;Jang, Hang-Seok;Kim, Jee-Hyun;Kang, Shin-Won
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.8-13
    • /
    • 2011
  • We present measurements of the Brillouin frequency shift in an optical fiber using a 1550 nm distributed feedback laser diode(DFB-LD) as a light source. By modulating the probe light with an electro-optic modulator, we confirm the stimulated Brillouin gain spectrum(BGS) and spontaneous BGS using the coherent detection method. We also confirm the applicability of the technique to distributed temperature sensors that measure the change in Brillouin frequency shift due to temperature variations.

Distributed optical fiber sensors for integrated monitoring of railway infrastructures

  • Minardo, Aldo;Coscetta, Agnese;Porcaro, Giuseppe;Giannetta, Daniele;Bernini, Romeo;Zeni, Luigi
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.2
    • /
    • pp.173-182
    • /
    • 2014
  • We describe the application of a distributed optical fiber sensor based on stimulated Brillouin scattering, as an integrated system for safety monitoring of railway infrastructures. The strain distribution was measured statically and dynamically along 60 meters of rail track, as well as along a 3-m stone arch bridge. We show that, gluing an optical fiber along the rail track, traffic monitoring can be performed in order to identify the train passage over the instrumented sector and determine its running conditions. Furthermore, dynamic and static strain measurements on a rail bridge are reported, aimed to detect potential structural defects. The results indicate that distributed sensing technology represents a valuable tool in railway traffic and safety monitoring.

Measurement of Distributed Temperature and Strain Using Raman OTDR with a Fiber Line Including Fiber Bragg Grating Sensors (광섬유 브래그 격자 센서가 있는 광섬유 라인에 라만 OTDR을 이용한 분포 온도 및 변형률 측정 가능성에 대한 연구)

  • Kwon, Il-Bum;Byeon, Jong-Hyun;Jeon, Min-Yong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.6
    • /
    • pp.443-450
    • /
    • 2016
  • In this study, we propose a novel fiber optic sensor to show the measurement feasibility of distributed temperature and strains in a single sensing fiber line. Distributed temperature can be measured using optical time domain reflectometry (OTDR) with a Raman anti-Stokes light in the sensing fiber line. Moreover, the strain can be measured by fiber Bragg gratings (FBGs) in the same sensing fiber line. The anti-Stokes Raman back-scattering lights from both ends of the sensing fiber, which consists of a 4 km single mode optical fiber, are acquired and inserted into a newly formulated equation to calculate the temperature. Furthermore, the center wavelengths from the FBGs in the sensing fiber are detected by an optical spectrum analyzer; these are converted to strain values. The initial wavelengths of the FBGs are selected to avoid a cross-talk with the wavelength of the Raman pulsed pump light. Wavelength shifts from a tension test were found to be 0.1 nm, 0.17 nm, 0.29 nm, and 0.00 nm, with corresponding strain values of $85.76{\mu}{\epsilon}$, $145.55{\mu}{\epsilon}$, $247.86{\mu}{\epsilon}$, and $0.00{\mu}{\epsilon}$, respectively. In addition, a 50 m portion of the sensing fiber from $30^{\circ}C$ to $70^{\circ}C$ at $10^{\circ}C$ intervals was used to measure the distributed temperature. In all tests, the temperature measurement accuracy of the proposed sensor was less than $0.50^{\circ}C$.